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a b s t r a c t

Non-planar solar cell devices have been promoted as a means to enhance current collection in absorber
materials with charge-transport limitations. This work presents an analytical framework for assessing
the ultimate performance of non-planar solar cells based on materials and geometry. Herein, the physics
of the p-n junction is analyzed for low-injection conditions, when the junction can be considered
spatially separable into quasi-neutral and space-charge regions. For the conventional planar solar cell
architecture, previously established one-dimensional expressions governing charge carrier transport are
recovered from the framework established herein. Space-charge region recombination statistics are
compared for planar and non-planar geometries, showing variations in recombination current produced
from the space-charge region. In addition, planar and non-planar solar cell performances are simulated,
based on a semi-empirical expression for short-circuit current, detailing variations in charge carrier
transport and efficiency as a function of geometry, thereby yielding insights into design criteria for solar
cell architectures. For the conditions considered here, the expressions for generation rate and total
current are shown to universally govern any solar cell geometry, while recombination within the space-
charge region is shown to be directly dependent on the geometrical orientation of the p-n junction.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Contemporary solar cell designs are based on a planar geome-
try, for which charge carrier separation and photon absorption are
approximately one-dimensional within the device. Using one-
dimensional physics for simulating device performance is gener-
ally appropriate for most planar devices, when the solar cell is
approximated as a simple, 1D, p-n junction. There are cases,
however, such as when considering high-efficiency solar cell
designs, (e.g. rear point-contact and/or back-contact solar cells),
that using one-dimensional physics may not truly capture the
intricacies of the device, and 2D/3D finite element methods are
typically used to simulate performance. In addition to factors such
as material and manufacturing costs [1–3], novelty of non-planar
solar cell architectures is grounded in the idea that some non-
planar devices decouple optical and electronic path lengths [4]
and, therefore, offer opportunities to alter the competing roles of
charge carrier collection and recombination within a device, which
limit efficiency for planar cells with low charge carrier mobility
and lifetime. In the last decade, a number of unconventional, non-
planar solar cell designs have been proposed, and some experi-
mentally fabricated [4–13], in efforts to increase energy conversion
efficiencies. To date, however, the “planar” solar cell architecture

still holds all efficiency records over its non-planar counterparts
[14]. While there is substantial information describing analytical
1D device physics of planar solar cells [15–24], a comparatively
small amount of literature is available describing analytical charge
carrier transport properties for non-planar solar cell devices
[14,25–30]. By detailing the device physics of a “geometrically
generalized” solar cell, devices of various geometrical architectures
are modeled congruently to ascertain the conditions under which
non-planar configurations improve efficiency.

Our aim is to develop a simple framework for analytically
calculating solar cell current as a function of voltage for a geome-
trically generalized p-n junction solar cell, analogous to the model
employed to analytically calculate current as a function of voltage for
a planar p-n junction solar cell. The purpose in doing so is to provide
a better practical understanding of charge carrier transport for non-
planar solar cells, and to explain how geometry, alone, can easily, and
significantly, alter solar cell performance. Previous attempts to
compare device performance of cylindrical/radial and planar solar
cells have focused on minority charge carrier diffusion in the quasi-
neutral regions (QNR's) [26–30]. As such, we do not attempt to
improve upon previous efforts solving for minority charge carrier
diffusion current densities in the QNR's and, instead, focus on
developing a generalized curriculum for the constituent components
that govern solar cell I-V characteristics of non-planar geometries.

In the low injection limit, a p-n junction is typically considered to
be spatially separable into two QNR's and a space-charge region
(SCR). We display a spatially generalized p-n junction in Fig. 1, with
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the distinct regions indicated by vector positions r
,
i, i¼ 0;1;2;3, for

the purpose of indicating the spatial orientation of the junction in
this discussion. In addition, we also show proposed energy band
modifications in the SCR, which we explain in further detail in
subsequent sections. In our analysis, a given transport variable
Xðr,Þ in the n-type QNR (nQNR) is implied by the relationship

Xðr,0rr
,rr

,
1Þ � XNðr,Þ, based on the p-n junction shown in Fig. 1.

Likewise, in the SCR, Xðr,1rr
,rr

,
2Þ � XSC ðr,Þ, and in the p-type QNR

(pQNR), Xðr,2rr
,rr

,
3Þ � XPðr,Þ.

2. Theory

2.1. Total device current

The area over which charge extraction occurs for a p-n junction
is a function of position and, therefore, is not necessarily uniform
for non-planar devices. Thus, current density (i.e. charge per unit
time per unit area) is not necessarily conserved for all solar cell
architectures, though it certainly is for the planar geometry [15–
17,20–24]. However, current (i.e. charge per unit time) is funda-
mentally conserved for all geometries. Therefore, we deviate from
traditional methods attempting to model total current density of a
solar cell, and instead focus on calculating total current, because it
is more fundamental to non-planar solar cell performance. To
arrive at an expression for total current of the geometrically
generalized solar cell device, we apply conservation of current at
a specific position along the p-n junction, analogous to the
methodology applied to planar solar cells. However, because
manipulation of the drift-diffusion and continuity equations in
the QNR's yield expressions for current density, not current, we
write conservation of current at a specific position in the p-n
junction in terms of area integrals over current density; i.e.

itotal ¼∬ j
,

n r
,
� �

Uda
,

r
,
� �

þ∬ j
,

p r
,
� �

Uda
,

r
,
� �

: ð1Þ

According to the planar analysis [15–17,20–24], appropriate
positions along the solar cell device to sum the electron and hole
current densities are at either r

,¼ r
,
1 or r

,¼ r
,
2, as these positions

share boundaries with the SCR. By combining conservation of
current density with a charge carrier continuity equation across
the SCR, the expression for total current density becomes a sum of
minority charge carrier current densities from the QNR's, evalu-
ated at the edges of the SCR (positions r

,¼ r
,
1 and r

,¼ r
,
2), and

generation and recombination current densities from across the
SCR [15–17,20–24]. Here, we employ the same methodology, but

now apply it to conservation of current in Eq. (1). In addition, we
re-write Eq. (1) in terms of generalized coordinates, so that the
expression for total current may be utilized by any coordinate
system. In this way, the expression for total current is universal for
all geometrical orientations of a p-n junction, provided that the
junction is established symmetrically along only one axis of a
coordinate system (i.e. current density is flowing parallel to only
one unit vector normal of an area element), and that the low-
injection limit is applicable. For a three dimensional system of
generalized coordinates qi, the position vector r

,
is defined by

r
,¼ ∑

3

i ¼ 1
qiêi ; ð2Þ

the gradient ∇
,

is defined by

∇
,
A¼ ∑

3

i ¼ 1

1

hi r
,
� � ∂A

∂qi
êi ð3Þ

for a scalar A, divergence is defined by

∇
,

UB
,
¼ 1

h1 r
,
� �

h2 r
,
� �

h3 r
,
� � ∂

∂q1
h2 r

,
� �

h3 r
,
� �

B1

� ��

þ ∂
∂q2

h1 r
,
� �

h3 r
,
� �

B2

� �
þ ∂
∂q3

h1 r
,
� �

h2 r
,
� �

B3

� ��
ð4Þ

for a vector B
,
, and the infinitesimal area element da

,
r
,
� �

is defined
by

da r
,
� �

n̂¼ ∑
3

i ¼ 1
dai r

,
� �

êi: ð5Þ

For all expressions, the elements êi represent unit vectors, and

hiðr
,Þ represent the coordinate transformation factors (e.g. in

cylindrical coordinates, h1ðr,Þ ¼ 1, h2ðr,Þ ¼ ρ, and h3ðr,Þ ¼ 1).

For conservation of current evaluated at r
,¼ r

,
1, Eq. 1 becomes

itotal ¼∬ j
,

pN r
,
� �����

r
,¼ r

,
1

:da
,

r
,
� �����

r
,¼ r

,
1

þ∬ j
,

nN r
,
� �����

r
,¼ r

,
1

:da
,

r
,
� �����

r
,¼ r

,
1

:

ð6Þ

However, from the low injection analysis of the drift-diffusion
and charge continuity equations in the QNR's, no expression for

the majority electron current density j
,

nN ðr
,Þ in the nQNR is readily

available; only minority charge carrier expressions are readily
available in the QNR's. The planar analysis circumnavigates this
issue by determining the majority electron current density at

r
,¼ r

,
1 in terms of the minority electron current density at r

,¼ r
,
2

[15–17,20–24]. To determine the electron current density at r
,¼ r

,
1,

(j
,

nN ðr
,Þj

r
,¼ r

,
1

) in terms of the electron current density at r
,¼ r

,
2,

(j
,

nP ðr
,Þ
����
r
,¼ r

,
2

) the electron continuity equation is integrated across

the SCR, which is equally valid for non-planar p-n junctions when
assuming electron flow along only one coordinate axis q1; i.e.

h2 r
,
� �

h3 r
,
� �

j
,

nP
r
,
� �����

r,¼ r,2

�h2 r
,
� �

h3 r
,
� �

j
,

nN r
,
� �����

r
,¼ r

,
1

¼ �q
Z r

,
2

r
,
1

h1 r
,
� �

h2 r
,
� �

h3 r
,
� �

GSC r
,
� �

�USC r
,
� �� �

dq1 ð7Þ

r0 r3r2r1

µ

Fig. 1. Generalized p-n junction energy band diagram in the low injection limit.
The spatial energy dependence is shown for planar (linear dependence; red),
cylindrical (logarithmic dependence; blue), and spherical (inverse dependence;
black) architectures.
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Combining Eqs. (6) and (7), total current can be shown to be
expressed as,

itotal ¼∬ j
,

pN r
,
� �����

r
,¼ r

,
1

Uda
,

r
,
� �����

r
,¼ r

,
1

þ∬
h2 r

,
� �

h3 r
,
� �

j
,

nP r
,
� �����

r
,¼ r

,
2

h2 r
,
� �

h3 r
,
� �����

r
,¼ r

,
1

U

da
,

r
,
� �����

r
,¼ r

,
1

þq
Z Z Z r2

r1
GSC r

,
� �

�USC r
,
� �� �

d3r U ð8Þ

Analogously, for total current evaluated at r
,¼ r

,
2, the expres-

sion becomes

itotal ¼∬
h2 r

,
� �

h3 r
,
� �

j
,

pN r
,
� �����

r
,¼ r

,
1

h2 r
,
� �

h3 r
,
� �����

r
,¼ r

,
2

Uda
,

r
,
� �����

r
,¼ r

,
2

þ∬ j
,

nP r
,
� � ����

r
,¼ r

,
2

U

da
,

r
,
� �����

r
,¼ r

,
2

þq
Z Z Z r1

r2
GSC r

,
� �

�USC r
,
� �� �

d3r: ð9Þ

It is extremely important to note that Eq. (8) and (9) are
physically identical, despite how they appear analytically. Upon
being applied to a particular geometry (planar, cylindrical, and,
spherical, as well as other less symmetric situations), either
position will yield identical forms for the total current expression.
Hence, these expressions are the most general form of total
current for a p-n junction solar cell in the low injection limit.
The equations for total current are expressed in Cartesian, cylind-
rical, and spherical coordinate systems in Appendix 1.

In order to evaluate Eqs. (8) and (9) (i.e. in order to simulate I-V
characteristics using Eqs.'(8) and (9)), the solutions for the minor-
ity charge-carrier diffusion current-densities in the QNR's

(j
,

pN ðr
,Þ ¼ �qDpN∇

,
pNðr

,Þ and j
,

nP
ðr,Þ ¼ qDnP∇

,
nPðr,Þ), as well as the

generation GSC ðr,Þ and recombination USC ðr,Þ rates in the SCR, need
to be predetermined. As mentioned earlier, we do not attempt to
improve upon calculations of minority charge-carrier diffusion in
the QNR's for non-planar geometries. The equations governing low
injection, minority charge-carrier diffusion in the QNR's are still
governed by

DνΩ∇
2νΩ r

,
� �

�
ΔνΩ r

,
� �

τνΩ
¼ �GΩ r

,
� �

; ð10Þ

with νΩ ¼ pN ; nP representing both QNR's [15–17,20–24]. In addi-
tion, voltage dependence is still obtained by the law of the junction

(i.e. nΩðr
,ÞpΩðr

,Þ ¼ ni
2exp βqV

� �
), applied as a boundary condition for

both of the quasi-neutral/space-charge interfaces [15–17,20–24].
Because the law of the junction is a scalar condition, it is not
affected by the geometry of the p-n junction. The second boundary
condition for Eq. (10) is given by the generation and recombina-
tion at the surface (the metal/QNR interface); it is defined by the
vector representation of current density at this interface,

j
,

νΩ ðr
,Þ ¼ 8qDνΩ∇

,
νΩðr

,Þ ¼ � q ∇νΩðr
,Þ s,νΩ ðr

,Þ, where s
,
νΩ ðr

,Þ is the sur-
face recombination velocity (SRV). To analytically calculate total
current of a solar cell device, solution(s) to Eq. (10) must exist for a
given geometrical orientation of a p-n junction, which, at present,
has only been achieved, analytically, in Cartesian coordinates using
a one-dimensional approximation for charge transport (note: 1D
approximations and perturbative techniques have been used to get
solutions for Eq. (10) for cylindrically radial p-n junctions as well
[26,27]). Changes to the expressions for the generation and
recombination rates in the SCR are the subject of interest for the
next two subsections.

2.2. Recombination rates

Because recombination rates UΩðr
,Þ in the QNR's (in the low

injection limit) are proportional to the difference between biased

and un-biased minority charge carrier concentrations ΔνΩðr
,Þ=τνΩ

[21], recombination is only implicitly spatially dependent. There-
fore, there is no change in the explicit functional forms for
radiative, Shockley-Read-Hall (SRH), or Auger recombination
(AR) rates in the QNR's in a geometrically generalized solar cell
device, as compared to the planar solar cell device. However, some
recombination rates in the SCR are explicitly spatially dependent,
and will take on different functional forms in different cell
geometries. Appendix 2 highlights the geometrically generalized
recombination rates considered here in the SCR, for the types of
recombination discussed above [18]. Total recombination in the
SCR is the sum of all recombination rates.

Because radiative recombination occurs between the conduc-
tion and valence bands, it is independent of position and, there-
fore, of geometry (this assumes uniform energy bands across the
SCR). However, in the SCR, because energy is a function of position,
both SRH and Auger recombination become spatially dependent.
Sah, Noyce, and Shockley originally established the functional
form for the spatial dependency [18] of SRH recombination in
the SCR for a planar solar cell configuration. Their analysis
incorporated spatial dependency into the energy of trap states
within the band gap, and into the intrinsic chemical potential
across the SCR of a planar, single junction solar cell. Based on the
quadratic energy band curvature within the SCR (as solved for
from Poisson's equation), they assumed a first-order, linear
approximation for the energy dependency of the intrinsic chemi-
cal potential in the planar solar cell configuration [18]. However,
for non-planar solar cell configurations, the solution to Poisson's
equation in the SCR changes. While solutions still maintain a
quadratic term, solutions to Poisson's equation in cylindrical and
spherical geometries yield a logarithmic and hyperbolic lowest-
order term, respectively, not a linear dependency, as the case is for
the planar junction. Here, keeping only lowest order terms to
approximate the spatial dependency of the intrinsic chemical
potential, as Sah et al. did, we have adapted the analysis for SRH
and Auger recombination across the SCR to account for cylindrical
and spherical geometries. Our approach for determining the
spatial dependence of the intrinsic chemical potential across the
SCR is the basis for constructing the spatial dependence of the
energy band diagram shown in Fig. 1 (i.e. linear for planar,
logarithmic for cylindrical, and hyperbolic for spherical). Equations
governing the intrinsic chemical potential for planar (Sah, et al.),
cylindrical, and spherical geometries are indicated in Table 1.

In the low injection limit, there is also no explicit change in the
functional expression for the surface recombination rate (note: the
surface recombination rate has different units ½cm�2 s�1� than the
bulk recombination rate ½cm�3 s�1�). Like the QNR bulk recombi-
nation rate, the surface recombination rate in the low injection

Table 1
Spatial dependences of the intrinsic chemical potential within the space-charge
region. Here, VB:I: represents the built-in bias of the junction.

Geometry Intrinsic Chemical Potential μi r,
� �

in the SCR

Planar μi zð Þ�εFC þεFV
2

q VB:I:�V½ � ¼ 1
r2�r1

z�r1þr2
2

h i
(11)

Cylindrical μi ρ
� ��εFC þεFV

2

q VB:I:�V½ � ¼ 1

ln r2
r1

	 
ln ρffiffiffiffiffiffiffiffiffi
r1r2

p
� �

(12)

Spherical μi rð Þ�εFC þεFV
2

q VB:I:�V½ � ¼ �1
r

r1r2
r2�r1

þ r1
r2�r1

þ1
2 (13)
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limit is driven by the difference between equilibrium and non-
equilibrium charge injection concentrations, and therefore
is only implicitly dependent on geometry/position; i.e.

Usurf aceðr
,Þ n̂¼ s

,
νΩ ðr

,Þ ΔνΩðr
,Þ, where s

,
νΩ ðr

,Þ is the SRV. The surface

recombination current ( Isurf ace ¼ �q∬ Usurf aceðr
,Þ n̂Uda,ðr,Þ ), how-

ever, may be drastically altered for non-planar solar cells due to

the fact that surface area ∬ da
,ðr,Þ is not constant and therefore is a

function of position r
,

for non-planer p-n junctions. For radial
junctions, there can be large variability in surface recombination

current produced for charges collected at the inner radius r
,
0 versus

those collected at the outer radius r
,
3 (as surface area increases as

r23�r20).

The effects of geometry on the SRV s
,
νΩ ðr

,Þ itself still remain to
be determined. Because SRV is a vector quantity, it is almost
certainly highly dependent on the orientation of the p-n junction.
Functional expressions for the SRV's are found, for example, using
series solutions for the minority charge carrier concentrations

νΩðr
,Þ in the charge continuity equations at the metal/semicon-

ductor interfaces [31,32]. As with the non-linear, inhomogeneous,
partial differential equations governing minority charge carrier
transport in the QNR's, we do not attempt to solve the equations
governing SRV for non-planar p-n junctions in this analysis, and
instead, restrict our consideration to SRV's as a spatially-

independent varying parameter s
,
νΩ for the boundary conditions

governing Eq. 10. A rigorous treatment of the effects of surface
recombination on radial p-n junctions is detailed in Ref. [29].

3. Generation rate

A one-dimensional expression for the charge-carrier genera-
tion rate G z0ð Þ is available in any number of references on solar cell
physics [15–17,20–24]. This expression typically takes a form
similar to

G z0ð Þ ¼
Z εmax

Δ
1�ℛ εγ

� �� 
α εγ
� � IAMX εγ

� �
εγ

exp �α εγ
� �

z0
� �

dεγ ; ð14Þ

where: εγ represents photon energy, Δ is the energy band gap of
the semiconductor, ℛ εγ

� �
is the reflectance, α εγ

� �
is the absorp-

tion coefficient of the semiconductor, z0 is the path length for
photon absorption in the semiconductor ( z0 zð Þ ¼ r3�z, for light
entering through a p-type window layer), and IAMX εγ

� �
is the

measured solar spectral irradiance, with X ¼ 0-1:5, for varying air
mass values.

To generalize this charge generation rate, we retraced the
constituent components in the one-dimensional derivation, taking
into account all three spatial dimensions. The standard compo-
nents of the generation rate derivation are 1) steady-state photon
continuity, 2) Planck's law of radiation, 3) the Beer-Lambert law, 4)
particle number conservation, and 5) the Earth-Sun orientation
[15–24]. Combining these steps, we derive a geometrically gen-
eralized charge carrier generation rate as the divergence of a
spatially decaying photon flux,

G r
,
0� �

¼ �∇
,

Uσ, r
,
0� �

ð15Þ

where the vector σ,ðr,
0
Þ represents the spatially decaying incident

photon flux (having units of cm�2 s�1), defined by

σ, r
,
0� �

¼ k̂
Z εmax

Δ
1�ℛ εγ

� ��  IAMX εγ
� �
εγ

exp �α, εγ
� �

Ur
,
0� �
dεγ : ð16Þ

In this representation, the charge carrier generation rate takes
the functional form of a typical source-term in fluid equations. The

unit vector k̂ defines the direction of incident light on the solar
cell, and is defined by the vector representation of the speed of

light c
,¼ ck̂. Eq. 15 indicates that the generation rate of charge

carriers is fundamentally dependent on incident light orientation
with respect to the surface normal of the cell. This generalization
appears to have yet been reported in the context of p-n junction

solar cells. In the context of the photon continuity equation, σ,ðr,
0
Þ is

analogous to the Poynting vector in Poynting's Theorem [33]. In
fact, for electromagnetic radiation being absorbed through the

Beer-Lambert law, the only difference between σ,ðr,
0
Þ and the

Poynting vector S
,
ðr,

0
Þ, is that the Poynting vector describes the

spatially decaying flux of the photon energy (with units of

eV cm�2 s�1) being absorbed, while σ,ðr,
0
Þ describes the spatially

decaying flux of the number of photons themselves. When applied
to particular p-n junction orientations, Eq. 15 has unexpected
consequences on the spatial dependences that the generation rate
takes, which we discuss in detail in the Results and Discussion
section.

4. Results and discussion

4.1. Space-charge region recombination

We have plotted the intrinsic chemical potential versus SCR
position for planar, cylindrical, and spherical geometries in Fig. 2.
From the plots in Fig. 2, it is seen that in addition to geometry of
the junction, both SCR width (r2�r1) and inner radius r1 are
spatial parameters that affect the curvature of the intrinsic

Pl
an

ar
C

yl
in

dr
ic

al
Sp

he
ric

al

Fig. 2. Spatial dependence of the scaled intrinsic chemical potential
μi rð Þ�b=q VB:I:�V½ � for the three solar cell architectures analyzed.
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chemical potential across the SCR. For the cylindrical and spherical
architectures (Fig. 2b and c), it is seen that increasing the inner
radius decreases the curvature of the intrinsic chemical potential,
moving toward a linear spatial-dependence. This is indicative of a
size-scale feature for non-planar architectures, where energy
dependence across the SCR becomes more like that of a planar
device. The dependence of the intrinsic chemical potential on the
SCR width is opposite of that for the inner radius r1, in that for
increasingly larger space-charge regions, the energy dependence
curvature increases. Here it is seen that for smaller space-charge
regions, the intrinsic chemical potential is, again, approximately
linear. The combination of both effects (increasing/decreasing
inner radii and SCR widths) described above indicate that for
SCR thicknesses that are small with respect to inner radius
dimensions, recombination dynamics in the SCR can be approxi-
mated by planar device physics, as detailed by Sah, Noyce, and
Shockley. This obvious conclusion about how geometry affects
recombination in the SCR is mentioned here, only for verification
of our results; i.e. it is a well-known fact that for many (if not all)
systems, that the local physics on a thin cylindrical or spherical
shell with a large radius can be approximated as planar. In
simulating the recombination current across the SCR, however,
appropriate geometries will still be needed to calculate the volume
integrals (shown in Appendix 1). Previous models of non-planar,
cylindrically radial p-n junctions used planar SRH recombination
statistics in the SCR, as established by Sah, et al. [18]; valid only for
a thin cylindrical shell with a large radius. Here, we are now able
to model recombination statistics for planar, cylindrical, and
spherical p-n junctions, for any ratio of SCR width to inner radius.

Inserting the spatial dependencies of the intrinsic chemical
potentials from Table 1 into the recombination rates in Appendix

2, Fig. 3 shows the recombination statistics in the SCR as the sum
of radiative, SRH, and Auger recombination. Note: SRH recombina-
tion dominates in the SCR by many orders of magnitude in the low
injection limit. For SRH recombination, we assume that the energy
of trap states within the band gap is equal to the intrinsic chemical
potential, because near-mid-gap trap states maximize SRH recom-
bination [18]. Fig. 3a affirms our choice for drawing the energy
bands across the SCR in Fig. 1. From Fig. 3b, the non-linear intrinsic
chemical potentials within the SCR have the effect of changing the
position of the maximum recombination rate. Note, in Figs. 3a and
3b, the SCR distance is expressed logarithmically. In addition, our
results for the planar recombination rate within the SCR closely
match those reported by Sah, et al. [18]. The maximum rate of
recombination, for all geometries, occurs where the corresponding
intrinsic chemical potential crosses the ordinate origin. Because of
the spatial dependences of the intrinsic chemical potentials, the
positions of maximum recombination within the SCR occur closer
to r1 for the cylindrical and spherical geometries.

Using Appendix 1 to calculate a recombination current across
the SCR, we fix the volume for a planar slab, a cylindrical shell, and
a hemispherical shell, and integrate the corresponding recombina-
tion rates over the volumes. Figs. 3c and 3d show dark current for
the three geometries considered, with “short” carrier lifetimes
(10�8 second) and “long” carrier lifetimes (10�6 second) in the
SCR. Despite the fact that volume is constant, the recombination
current produced from the SCR actually changes depending on
which geometrical orientation the p-n junction takes. The results
indicate there is an inextricable relationship connecting material
properties and junction geometry concerning the performance of a
solar cell. For the “short” carrier lifetimes, the spread in rectifying
voltages for the three geometries is significantly larger than for the

Fig. 3. (a) Intrinsic chemical potential as a function of SCR position from r1 to r2 on a logarithmic scale. (b) Recombination rates as a function of SCR position from r1 to r2 on a
logarithmic scale. The overlaid dotted line indicates the midpoint of the SCR. Recombination (dark) current simulations for (c) 10�8 and (d) 10�6 charge carrier lifetimes in
the SCR.
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“long” carrier lifetimes. This trend indicates that for materials with
“good” transport properties (e.g. lifetime, mobility, diffusivity, etc.),
geometry affects overall solar cell performance less. We base this
conclusion on the range of current shown and on typical short-
circuit current values for a 1 cm2 solar cell [15–24]. Based on these
results, for p-n junctions that have significant contribution to total
current from the SCR, the planar intrinsic chemical potential
approximation across the SCR will yield increasingly invalid over-
estimates of dark current from the SCR.

4.2. Generation current

To emphasize differences in the generation rates, as functions
of both geometry and incident light orientation, short-circuit
currents Isc are calculated for a planar absorber, and arrays of
cylindrical, and hemispherical absorbers, by virtue of the integral
equation

Isc r
,
� �����

r
,¼ R

,
¼ q N r

,
� �����

r
,¼ R

,
∭G r

,0� �
exp �r

,
U n̂

Ldif f

0
@

1
Ad3r; ð17Þ

where exp � r
,
U n̂

Ldif f

� �
is an ad hoc collection probability factor, n̂ is the

unit vector direction normal to the area element through which

current is flowing, Nðr,Þ
���
r
,¼ R,

R
,
is the number of cells in a given area

for the cylindrical and spherical array, r
,
0
is, again, the path length

for photon absorption, and Ldif f is the average distance charge
carriers will travel before a recombination event (i.e. the diffusion

length). The notation r
,¼ R

,
is meant to denote that while the

volume integral leaves no spatial variable dependence r
,

in the

short-circuit current, it is still dependent on spatial parameters R
,
(e.

g. radius, length) inherent to the geometry of the volume. The
functional forms of the generation rates used for the various
geometries and incident light orientations are shown in Appendix
3. In the architectural comparisons shown in Fig. 4, incident photon
number onto all structures is conserved for all geometries, and 100%

light absorption is assumed (this affects the number Nðr,Þ
���
r
,¼ R

, of

cells per unit area). In addition, material properties (e.g. band gap,
absorption coefficient, diffusion length, area, absorber volume etc.)
are held fixed across all architectures. It should be noted that for
these results, the short-circuit current density that is calculated is
taken from the view of the light source. By conserving the incident
photon number onto each absorbing structure, we are able to
obtain an expression for short-circuit current density, where the
area element used to calculate it is the area of the cell that is
exposed to light APV ¼ 1 cm2; i.e. jtotal ¼ itotal=APV . For the cylindrical
and hemispherical geometries, charge flow is taken to be entirely
radial (i.e. n̂¼ ρ̂ and n̂¼ r̂, respectively).

Incident light does not naturally converge/concentrate in a radial
fashion, though it may be engineered to do so with, for example, a
microlens array [34]. Therefore, it is interesting to observe the
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Fig. 4. Normalized short-circuit current density as a function of absorber volume for planar, cylindrical, and hemispherical architectures for (a) 10 mm and (b) 100 nm
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(e) Hemispherical absorber. Note, k̂ indicates the direction of incident light onto the absorber. Based on our calculation of the number of cells in the array (see Appendix 3),
which assume 100% light absorption regardless of the incident light orientation, the cylindrical and hemispherical radii and length will vary with increasing total absorber
volume.
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functional differences in the generation rates produced from such
effects. Fig. 4 shows short-circuit currents calculated through Eq. 17.
For the cylindrical absorber with longitudinally incident light (i.e.
k̂¼ � ẑ), the short-circuit current shown is for a cylindrical absorber
with a radius of 10 nm. Short-circuit currents for (a) 10 μm and
(b) 100 nm diffusion lengths are shown together in Fig. 4 for
comparison. While the peak of short-circuit current for the cylind-
rical absorber is only slightly greater than that of the planar
absorber with a 10 μm diffusion length, the maximum cylindrical
short-circuit current is almost two times the planar maximum for
that of a 100 nm diffusion length. It is important to point out that
the properties of current collection, based on values for diffusion
length, are relative to the absorption properties of the material; for
absorber thicknesses of approximately 500 nm, this hypothetical
material has absorbed nearly 100% of all incident light, which can
be seen from the cylindrical short-circuit current curves in Fig. 4. In
general, for charge collection length scales that are small compared
to average photon absorption depths, the cylindrical geometry has
the potential to significantly increase short-circuit current, provided
that the cylinder radius is small compared to recombination length
scales of the material.

Also worthy of discussion is the fact that the cylindrical short-
circuit current saturates to its maximum value for larger absorbing
volumes. This is due to the fact that for longitudinally incident light
with 100% light absorption, the cylindrical absorber volume only
increases with cylinder length, not radius. Note, this will not
necessarily be true when considering non-perfect absorption. Since
the probability of current collection decreases only with increasing
radius, nearly all photogenerated charge carriers will be extracted
radially for the cylindrical absorber, despite any increase in cylinder
length, provided that the cylinder radius is small compared to the

charge carrier diffusion length (i.e. r ¼ 10 nm{Ldif f ¼ 100 nm).
Increases in cylinder length will only benefit the performance of
short-circuit current by allowing for the absorption of more light.
Therefore, as cylinder volume increases (i.e. as cylinder length
increases), the short-circuit current plateaus because photon absorp-
tion has saturated, with nearly 100% of all incident photons having
already been absorbed at a depth of approximately 500 nm. When
directionally-dependent charge carrier collection expð�ðr,U n̂=Ldif f ÞÞ
is considered in calculating the short-circuit current, the cylindrical
absorber, with longitudinally incident light, is the only architecture to
have this feature in short-circuit current, because it is the only
situation where photon absorption and charge collection are
mutually orthogonal (ρ̂U ẑ¼ 0).

However, it should also be noted that any increase in short-
circuit current for the cylindrical absorber comes at a cost of more
material. In Fig. 4b, the short-circuit current maximum for the
cylindrical absorber occurs at almost an order of magnitude larger
material volume, as compared to the maximum short-circuit
current for the planar absorber. With this in mind, cost benefits
will be necessary when considering non-planar architectures for
“low” diffusion length materials.

Based on the short-circuit current calculated through Eq. 17, it is
also possible to calculate the open-circuit voltage Voc and fill factor
FF of the absorber (see Appendix 4). From the short-circuit current,
open-circuit voltage, and fill factor, the conversion output power

P is also determined by Pðr,Þ
���
r
,¼ R

, ¼ Iscðr,Þ Vocðr,Þ FFðr,Þ
���
r
,¼ R

, : These

parameters are shown for the cylindrical absorber with long-
itudinally incident light in Fig. 5. The diffusion length used for
Fig. 5 is 100 nm. In Fig. 5a, the open-circuit voltage is shown to
decrease with both increasing cylinder radius and length. This

Fig. 5. (a) Open-circuit voltage, (b) fill factor, (c) normalized short-circuit current density, and (d) normalized output power for longitudinally-incident light on a cylindrical
absorber as a function of cylindrical length and radius.
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decrease is more sensitive to radius, however, which can be
accounted for from the fact that charge carrier collection prob-
ability only affects the radial direction. The decrease in open-
circuit voltage with increasing length is accounted for from the
fact that the saturation current Io of the absorber increases with
cylinder length, which, itself, is a consequence of the exponen-
tially decaying photon flux. The fill factor (Fig. 5b) also decreases
with increasing cylinder radius and length; however, this effect is
not as severe as compared to the open-circuit voltage. Fig. 5c
shows the cylindrical behavior described in the previous para-
graph, where the short-circuit current saturates at some max-
imum value for increasing cylinder length, but begins to decrease
rapidly with increasing radius, as the collection probability
becomes increasingly small for larger radii. The conversion out-
put power is shown in Fig. 5d. Here, the output power decreases
with increasing radius, accounting for smaller charge carrier
collection probabilities with increasing radius. Unlike short-
circuit current, however, output power reaches a local maximum
with respect to length. This peak, with respect to length, arises
from competing roles of absorption and saturation current
(accounted for in the open-circuit voltage) with increasing
cylinder length. The results show that the cylindrical absorber
should be as thin as possible in the radial direction, and only long
enough to sufficiently absorb light, while not diminishing per-
formance with increasing dark (saturation) current. We do note
that this conclusion, although derived from our calculations, has
also been concluded experimentally [4] and through other radial
p-n junction device simulations [26,27,30]. Results from Fig. 5 are
similar to prior results reported for radial p-n junctions [25–30]
that analyzed efficiency parameters according to cylinder length,
based on solutions for minority charge carrier diffusion in the
QNR's. We have included the results in Fig. 5 to expand the
spatial parameter space for cylindrically radial p-n junctions, by

accounting for effects on efficiency parameters due to both
cylinder radius and length, using a simpler model.

The open-circuit voltage, fill factor, and output power conver-
sion are compared for planar, cylindrical, and hemispherical
geometries, along with varying light incidences, in Figs. 6 and 7,
for diffusion lengths of 10 μm and 100 nm. Again, for longitudin-
ally incident light onto the cylindrical absorber, a radius of 10 nm
is used for these comparisons. The cylindrical absorber defines the
upper limit, in terms of efficiency parameters (Isc , Voc, and FF), that
all geometries and incident light orientations considered are
capable of achieving. For a 100 nm diffusion length, the efficiency
parameters are relatively the same at low material volumes. As
material volume increases, the efficiency parameters for the
cylindrical absorber maintain higher values than all other geome-
tries and incident light orientations. As diffusion length increases,
the efficiency parameters remain closely matched together for
increasing material volumes.

For the material parameters considered in this simulation, at a 10
μm diffusion length, the peak planar output power is approximately
the same as the peak cylindrical output power (Fig. 7a). Therefore,
there appears to be little to no benefit of constructing solar cells in a
non-planar architecture when the ratio of charge carrier collection
length to average photon absorption depth is much greater than
unity. However, in Fig. 7b, the cylindrical absorber clearly shows a
performance enhancement over all other geometrical architectures.
For 100% light absorption, the increase in material volume for the
planar and cylindrical absorbers works out to be identical. However,
for a 10 nm radius, the cylindrical absorber is capable of collecting
charge much more efficiently than the planar device when light is
incident longitudinally, and therefore, power conversion for the
cylindrical architecture is significantly greater. Our results for device
performance based on short-circuit current collected are precisely in
sync with our results from calculations concerning recombination
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Fig. 6. Open-circuit voltages for (a) 10 mm and (b) 100 nm diffusion lengths, and fill factors for (c) 10 mm and (d) 100 nm diffusion lengths in Planar (red), cylindrical (blue),
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current from the SCR (i.e. non-planar geometries yielded less dark
current in the SCR for semiconducting materials with “poor” trans-
port properties, and showed little improvement over the planar
geometry for semiconducting materials with “good” charge transport
properties in the SCR). These results are in fairly good agreement
with measured increases in device performance for amorphous
silicon nanocoaxial solar cells [4]. While marked increases in short-
circuit current have been reported for the nanocoaxial solar cell
architecture, the open-circuit voltages have been shown not to be
particularly affected. For comparable absorbing volumes (in the range
of 10�6�10�5 cm3), our results indicate that a cylindrical absorber
shows improved efficiency primarily from increases in photon
absorption, and thus by an increased short-circuit current, with little
change in the open-circuit voltage. Therefore, based on a simple, yet
effective, model employing a semi-empirical equation for short-
circuit current, which has reciprocal relations to other solar cell
performance parameters (Voc and FF), we conclude that when the
ratio of charge collection length to average photon absorption depth
is on the order of, or less than, unity, the cylindrical solar cell
geometry is preferable over the planar and hemispherical solar cell
geometries, to maximize efficiency.

While our results for device performance all stem from a semi-
empirical expression for short-circuit current (Eq. 17), that has
been adapted, here, to account for non-linear (i.e. radial) charge

carrier transport in a solar cell, this simplistic model has been
employed for the purpose of ascertaining important features of
device performance for non-planar geometries, without having to
solve the, cumbersome, second-order, non-linear, inhomogeneous,
partial differential equations describing minority charge carrier
diffusion, for which unrealistic approximations often have to be
made in order to solve them analytically (true, even more so, for
the hemispherical architecture than the cylindrical architecture of
a p-n junction solar cell). Because of this, it is not surprising that
some of the features we have reported herein are similar in scope
to those reported for cylindrically radial p-n junctions, as modeled
by minority charge carrier diffusion in the QNR's [26,27]. However,
the generalization of current, generation, and recombination,
discussed here, provide a framework for comparing solar cells of
all geometries, not only those of a planar and cylindrical symme-
try. Moreover, this generalization is necessary to compare device
performance as a function of geometry even for the simplistic
model used here. Therefore, we conclude that this geometrical
generalization of solar cell physics is crucial for understanding
device performance as a function of geometry, even at the most
basic level of device modeling.

5. Conclusion

We have derived analytical expressions for charge carrier
transport in a geometrically generalized single p-n junction solar
cell device in the low injection limit. In the low injection limit,
the equations for total current and generation rate are universal
for any solar cell geometry. Expressions for space-charge recom-
bination have been derived based on spatially-dependent forms
of the intrinsic chemical potential across the SCR. The expres-
sions for total device current, generation rate, and recombination
rates within the SCR, and the previously developed differential
equations describing minority charge carrier diffusion in the
QNR's, outline a framework for performing detailed analytical
calculations of I-V curves for planar, cylindrical, and spherical
geometrical orientations of a p-n junction solar cell. Based on a
simple, yet effective, model for determining the upper limit on
short-circuit current, we conclude that when the ratio of charge
collection length to average photon absorption depth is on the
order of, or less than, unity, the cylindrical absorber (with light
incident longitudinally) is the optimal geometry to construct a
solar cell.
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Appendix A

Total current, calculated through Eqs. 8 and 9, in Cartesian, and
cylindrically and spherically symmetric geometries. In Cartesian
coordinates, the expression for total current reduces to the con-
ventional expression for planar solar cell current density, since the
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current densities, jpN z; x; yð Þ
���
z ¼ r1

and jnP
z; x; yð Þ

��
z ¼ r2

, are independent of the variables x and y, and the area integrals over x and y are the

(constant) cross sectional area APV of the solar cell; i.e. APV ¼∬ dxdy. Prior calculations for total current density of cylindrically radial p-n
junctions made approximations on where charge was being collected [27], since it is not a conserved quantity for non-planar p-n junction
orientations.

Geometrical Symmetry Total Current Expression

Planar itotal ¼∬ jpN z; x; yð Þ
���
z ¼ r1

dxdyþ∬ jnP
z; x; yð Þ

��
z ¼ r2

dxdy

þq
Z Z Z r2

r1
GSC r

,
0� �

�USC r
,
� �� �

dzdxdy (A1)

Cylindrical itotal ¼ r1∬ jpN ρ;ϕ; z
� ����

ρ ¼ r1
dϕdzþr2∬ jnP

ρ;ϕ; z
� ���

ρ ¼ r2
dϕdz

þq
Z Z Z r2

r1
GSC r

,0� �
�USC r

,
� �� �

ρdρdϕdz (A2)

Spherical itotal ¼ r12∬ jpN r;θ;ϕ
� ����

r ¼ r1
sin θ
� �

dθdϕþr22∬ jnP
r;ϕ; z
� ���

r ¼ r2
sin θ
� �

dθdϕ

þq
Z Z Z r2

r1
GSC r

,
0� �

�USC r
,
� �� �

r2sin θ
� �

drdθdϕ (A3)

Appendix B

Geometrically generalized expressions for (B1) Radiative, (B2) Shockley-Reade-Hall, and (B3) Auger recombination within the SCR of a
homojunction device.

Rate Space-Charge Region (SCR) Recombination

Radiative URad ¼ B ni
2 exp βqV

� ��1
� 

(B1)

S.R.H.
USRH r

,
� �

¼
niffiffiffiffiffiffiffiffiffiffiffiffiffi

τpSC τnSC
p sinh βqV

2

	 

exp �βqV

2

	 

cosh β εt r

,
� �

�μi r
,
� �� �

� ln
ffiffiffiffiffiffiffi
τnSC
τpSC

q	 
� �
þcosh β μi r

,
� �

�εFC þεFV
2

� �
þ ln

ffiffiffiffiffiffiffi
τpSC
τnSC

q	 
� �
(B2)

Auger
UAug r

,
� �

¼ 4ni
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛpSCΛnSC

q
cosh β μi r

,
� �

�½εFCþεFV�=2
� �

þ ln

ffiffiffiffiffiffiffiffiffiffi
ΛpSC

ΛnSC

s ! !
exp βqV
� �

sinh
βqV
2

� �
(B3)

We derive expressions for SRH and Auger recombination rates analogous to the method performed by Sah, Noyce, and Shockley [18].
The explicit spatial dependence of these recombination rates is shown implicitly in terms of the intrinsic chemical potential μi r,

� �
. In our

analysis of SRH recombination, we assume mid-gap trap states, which we approximate to be equivalent to the intrinsic chemical potential
energy level across the SCR. In order to evaluate these recombination rates, it is necessary to have an explicit spatial dependence for the
intrinsic chemical potential for a given geometrical orientation of the p-n junction.

Appendix C

Functional expressions for generation rate in planar (C1), cylindrical, and hemispherical geometries, and for longitudinal (C2 and C4)
and radial light incidence (C3 and C5).

Geometry n̂
N r

,
� �����

r
,¼ R

,
Generation Rate; �∇

,
Uσ, r

,0� �

Planar k̂¼ � ẑ ẑ 1
Z εmax

Δ
1�ℛ εγ

� ��  IAMX εγ
� �
εγ

α εγ
� �

exp �α εγ
� � Volume

APV
�z

� �� �
dεγ (C1)

Cylindrical k̂¼ � ẑ ρ̂ APV

πR2

Z εmax

Δ
1�ℛ εγ

� ��  IAMX εγ
� �
εγ

α εγ
� �

exp �α εγ
� �

L�z½ �� �
dεγ (C2)

Cylindrical k̂¼ � ρ̂ ρ̂ APV
2πRL

Z εmax

Δ
1�ℛ εγ

� ��  IAMX εγ
� �
εγ

α εγ
� �

exp �α εγ
� �

R�ρ
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dεγ (C3)

Spherical k̂¼ � ẑ r̂ APV

πR2 cos2 θ
� � Z εmax

Δ
1�ℛ εγ

� ��  IAMX εγ
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εγ

α εγ
� �

exp �α εγ
� �

R�r½ � cos θ� �� �
dεγ (C4)

Spherical k̂¼ � r̂ r̂ APV
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Appendix D

Reciprocal relations of open-circuit voltage and fill factor with
short-circuit current. Open-circuit voltage is determined from
short-circuit current through the following relation [15–17,20–24],

Voc r
,
� �����

r
,¼ R

,
¼ 1
qβ

ln
Isc r

,
� �

Io r
,
� �þ1

0
BB@

1
CCA
��������
r
,¼ R

,

ðD1Þ

with Io representing the saturation current of the solar cell,
defined, here, by

Io r
,
� �����

r
,¼ R

,
¼ q B ni

2 Vtotal r
,
� �����

r
,¼ R

,
: ðD2Þ

In these expressions, β¼ kBTð Þ�1, ni represents the intrinsic
charge carrier concentration, Vtotal represents the total volume of
the absorber, and B is a constant of radiative recombination having
units of cm3=s. From Eq. D1, the fill factor can also be determined
through the expression [15–17,20–24],

FF r
,
� �����

r
,¼ R

,
¼

~V oc r
,
� �

� ln ~V oc r
,
� �

þ0:72
� �

~V oc r
,
� �

þ1

��������
r
,¼ R

,

ðD3Þ

with ~V oc r
,
� �

given by [15–17,20–24],

V
,

oc r
,
� �����

r
,¼ R

,
¼ q β Voc r

,
� �����

r
,¼ R

,
: ðD4Þ

Note: Eq. D3 is an approximation for conventional Si solar cells.
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