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Drude behavior in the far-infrared conductivity
of cuprate superconductors
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H. Berger3, L. Forró3, L. Mihaly4, G. Cao5, Beom-Hoan O6, J.T. Markert6, J. P. Rice7,
M. J. Burns8, and K.A. Delin8

1 Department of Physics, University of Florida, Gainesville, FL 32611-8440, USA
2 National Synchrotron Light Source, BNL, Upton, NY 11973, USA
3 Ecole Polytechnique Fédérale, 1015 Lausanne, Switzerland
4 Department of Physics, SUNY, Stony Brook, NY 11794, USA
5 National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, USA
6 Department of Physics, University of Texas, Austin, TX 78712, USA
7 Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA

8 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Received 8 October 2005, accepted 17 January 2006
Published online 26 May 2006

Key words Infrared, Drude, cuprate.
PACS 74.72.-h, 74.25.-q, 71.27.+a

In commemoration of Paul Drude (1863–1906)

When viewed at frequencies below about 8 THz (250 cm−1; 30 meV) the ab-plane optical conductivity of
the cuprate superconductors (in their normal state) is well described by a Drude model. Examples include
optimally-dopedYBa2Cu3O7−δ and Bi2Sr2CaCu2O8; even the underdoped phases have a Drude character
to their optical conductivity. A residual Drude-like normal fluid is seen in the superconducting state in most
cases; the scattering rate of this quasiparticle contribution collapses at Tc.

c© 2006 WILEY-VCHVerlag GmbH & Co. KGaA, Weinheim

1 Introduction

The normal-state dc electrical resistivity in the ab plane of the cuprate materials is metallic, in the sense
that it decreases with decreasing temperature [1]. Moreover, the magnitude of the dc resistivity, ∼200–300
µΩ-cm at 300 K, is consistent with a picture of transport by a high density of mobile carriers. Consequently,
it is natural to view the transport and optical properties in the context of a Drude model.
The Drude model is not adequate for the entire optical range, as there is known to be a strong absorption

in the midinfrared spectral range; in addition, charge-transfer and interband transitions occur at higher
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energies [2–4]. This midinfrared absorption [5] has been addressed either by including additional low-
energy Lorentz oscillators in the conductivity model (a two-component picture) or by using a generalized
Drude model with a frequency dependent scattering rate and effective mass (a one-component picture). The
latter approach is the one more commonly used these days [4].
Despite this, if one restricts one’s view to frequencies below about 8 THz (250 cm−1; 30 meV) the

ab-plane optical conductivity of the cuprate superconductors (in their normal state) is well described by a
Drude model. Either of the above pictures predicts similar behavior in this case: the experiment is below the
range of the Lorentz terms of the two-component picture and the frequency dependence of one-component
models is eliminated when the frequency ω < kBT/� with T the temperature.
In this paper, we focus on the low-energy, ab-plane, normal-state optical conductivity of several cuprate

superconductors. We discuss their behavior in terms of a Drude picture, and show that such a model gives
a good description of the data in most cases.

2 The Drude conductivity

The Drude conductivity σ(ω) is

σ(ω) =
ω2

pτ

4π(1 − iωτ)
(1)

where ωp =
√

4πne2/m is the plasma frequency, with n the carrier density andm the effective mass, and
τ the mean free time between collisions. In metals, where T � TF , the mean free path � is � = vF τ . (TF

is the Fermi temperature and vF is the Fermi velocity.) This condition is met in the cuprates, though the
Fermi velocity is about 10× smaller than in simple free-electron metals. The dc conductivity is the ω → 0
limit of this equation, σdc = ω2

pτ/4π = ne2τ/m. Good discussions of the optical properties of the Drude
model are in Wooten [6] and in Dressel and Grüner [7].
The corresponding dielectric function is

ε = ε∞ +
4πi
ω

σ. (2)

Here, ε∞ contains the contributions of higher-lying interband and core-level transitions. From these equa-
tions, we can calculate the optical properties of a material once the parameters are known. From a different
perspective, if the optical conductivity is measured, the data can be analyzed to obtain the scattering time τ
(or scattering rate 1/τ ) and the ratio of carrier density to effective mass, n/m. The latter quantity is usually
called the oscillator strength or spectral weight, because the real part of the conductivity, σ1(ω), satisfies
the sum rule,

∫ ∞

0
σ1(ω) =

π

2
ne2

m
(3)

Figure 1 shows the real and imaginary parts of the optical conductivity, σ1(ω) and σ2(ω) respectively,
calculated from the Drude model. The parameters are ωp = 9800 cm−1 and 1/τ = 2.3T , i.e., linear in the
temperature T . These parameters describe optimally doped Bi2Sr2CaCu2O8 and the a axis ofYBa2Cu3O7.
The real part of the conductivity, σ1(ω), equals the dc conductivity at zero frequency, falls to half that

value when ω = 1/τ , and follows a 1/ω2 behavior at high frequencies. Note that as temperature is lowered,
the curves become taller and narrower, and that the area under the curve is independent of τ , as shown by
Eq. (3). σ2(ω) = 0 at zero frequency, rises linearly, is maximum when ω = 1/τ , and falls as 1/ω at high
frequencies. It is smaller than σ1 at low frequencies and larger at high frequencies.
Two signatures of Drude-like metallic behavior are thus (1) a zero-frequency peak in σ1 which narrows

at low temperatures, and (2) a peak in σ2 that moves to lower frequencies as temperature decreases.
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608 H.L. Liu et al.: Drude behavior in cuprate superconductors

Fig. 1 (online colour at:
www.ann-phys.org) Real (left
panel) and imaginary (right
panel) parts of the optical con-
ductivity calculated from the
Drude model.

3 Experiment

We studied single crystals ofYBa2Cu3O7−δ and Bi2Sr2CaCu2O8 and films ofYBa2Cu3O7−δ . The prepara-
tion of the samples has been described elsewhere [8–15].The samples have excellent quality surfaces, exhibit
extremely low resistivity, and have sharp superconducting transitions. Crystal sizes ranged from 1×1 mm2

to 6×4 mm2; the YBa2Cu3O7−δ films were 10×10 mm2, quite thin (300–500 Å), and were deposited by
pulsed-laser ablation on a PrBa2Cu3O7−δ buffer layer onYAlO3 substrates. The underdoped samples were
Bi2Sr2CaCu2O8 orYBa2Cu3O7−δ single crystals. The former hadY3+ substituted for Ca2+, yielding [16]
underdoped samples with Tc = 35K (Pb 50%,Y 20%) and 40 K (Y 35%). In theYBa2Cu3O7−δ system, we
studied fully oxygenated Y1−xPrxBa2Cu3O7−δ single crystals in which substitution of Pr for the Y atom
changes the hole content in the CuO2 planes. The structure of the CuO chains remains unaffected [17]. The
Pr-doped samples have a Tc of 92, 75, and 40 K, respectively, for x = 0, 0.15, and 0.35.
Normal-incidence reflectance or transmittance data were obtained using a modified Perkin-Elmer 16U

grating spectrometer in the near-infrared through ultraviolet regions (2000–33,000 cm−1). The far-infrared
and midinfrared regions were covered using a Bruker IFS-113v Fourier transform spectrometer (80–4000
cm−1). The transmittance of Bi2Sr2CaCu2O8 over 100–700 cm−1 was measured at beamline U4-IR of
the National Synchrotron Light Source. For the single-domain samples, linear polarization of the light was
achieved by placing a polarizer of the appropriate frequency range in the path of the beam using a gear
mechanism that allowed in-situ rotation.

Low-temperature measurements (20–300 K) were done by attaching the sample holder assembly to the
tip of a continuous-flow cryostat. A flexible transfer line delivered liquid helium from a storage tank to the
cryostat. The temperature of the sample was stabilized by using a temperature controller connected to a
previously-calibrated Si diode sensor and a heating element on the tip of the cryostat.

Reflectance spectra, R were measured at each temperature for both the sample and for a reference Al
mirror. Division of the sample spectrum by the reference spectrum gave a preliminary reflectance of the
sample. After measuring the temperature dependence of this preliminary reflectance for each polarization,
the proper normalizing of the reflectance was obtained by taking a final room temperature spectrum, coating
the sample with a 2000Å thick film ofAl, and remeasuring this coated surface.A properly normalized room-
temperature reflectance was then obtained after the reflectance of the uncoated sample was divided by the
reflectance of the coated surface and the ratio multiplied by the known reflectance of Al. This result was

c© 2006 WILEY-VCHVerlag GmbH & Co. KGaA, Weinheim www.ann-phys.org
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then used to correct the reflectance data measured at other temperatures by comparing the individual room-
temperature spectra taken in the two separate runs. This procedure attempts to correct for any misalignment
between the sample and the mirror used as a temporary reference before the sample was coated and more
importantly, it provides a reference surface of the same size and profile as the actual sample area. The
uncertainties in the absolute value of the reflectance reported here are in the order of±1%. The error in the
anisotropy is much smaller, ±0.25%.
We measured the absolute transmittance T of free-standing single crystals at temperatures from 15 to

300 K. For metallic samples, the transmittance has the advantage of being less sensitive than the reflectance
to systematic errors. Crudely speaking, this is because T is measured relative to 0% while R is relative
to 100%, and it is hard to determine with great accuracy the 100% reference. The estimated error in our
transmittance measurements is δT = ±0.0005 below about 2000 cm−1, increasing to ±0.005 at higher
frequencies. Since the signal transmitted by the sample is much weaker than the reference signal, we
checked the linearity of the photodetector response with the intensity of the incident radiation. To minimize
the effects of drifts in the spectrometer, sample and reference spectra were taken at each temperature.

4 Analysis of experimental data

We estimated the optical constants by Kramers-Kronig transformation of the reflectance data [6], the trans-
mittance data [18], or from direct calculation when reflectance and transmittance are both measured [19].
The complex amplitude reflectivity coefficient r(ω) (the ratio of the reflected electric field to the incident

electric field) is

r(ω) = ρ(ω)eiθ(ω) =
1 − N

1 + N
, (4)

where ρ(ω) is the amplitude and θ(ω) the phase of the reflectivity coefficient. The complex refractive index
N(ω), with real and imaginary parts n(ω), the refractive index, and κ(ω),the extinction coefficient, is the
square root of the complex dielectric function ε(ω),

N(ω) = n(ω) + iκ(ω) =
√

ε(ω). (5)

A readily measured quantity is the reflectance, R = rr∗ = ρ2. It is difficult to measure the phase θ(ω)
of the reflected wave, but the Kramers-Kronig procedure allows it to be calculated if the reflectance R(ω)
is known at all frequencies. Once we know both R(ω) and θ(ω), we use Eqs. (4) and 5 to obtain N(ω),
ε(ω), or σ(ω).
The Kramers-Kronig relations enable us to find the real part of the response of a linear passive system

if we know the imaginary part of a response at all frequencies, and vice versa. We can apply the Kramers-
Kronig relations to the amplitude reflectivity coefficient r(ω) viewed as a response function between the
incident and reflected waves. An illuminating way to write the integral for the phase is

θ(ω) = − 1
2π

∫ ∞

0
ln

|s + ω|
|s − ω|

d lnR(s)
ds

ds. (6)

According to Eq. (6), spectral regions in which the reflectance is constant do not contribute to the integral.
Further, spectral region s 
 ω and s � ω do not contribute much because the function ln |(s+ω)/(s−ω)|
is small in these regions.
Formally, the phase-shift integral requires knowledge of the reflectance at all frequencies. In practice, one

obtains the reflectance over as a wide frequency range as possible and then terminates the transform by ex-
trapolating the reflectance to frequencies above and below the range of the availablemeasurements. The con-
ventional low-frequency extrapolation formetals is the so-calledHagen-Rubens relation,R(ω) = 1−A

√
ω,

where A is a constant determined by the reflectance of the lowest frequency measured in the experiment.

www.ann-phys.org c© 2006 WILEY-VCHVerlag GmbH & Co. KGaA, Weinheim



610 H.L. Liu et al.: Drude behavior in cuprate superconductors

For high-Tc samples, this procedure is inadequate; it can only be used as a first approximation. A better
procedure extends the low-frequency data using fits of the data to a Drude-Lorentz model. The reflectance
from this fit is then used as an extension below the lowest measured frequency. In the superconducting state,
the reflectance is expected to be unity for frequencies close to zero. An empirical formula that represents
the wayR approaches unity isR = 1−Bω4, whereB is a constant determined from the lowest frequency
measured. However, it is better to use the same Drude-Lorentz model, but with the Drude scattering rate
set to zero. The high frequency extrapolation has significant influence on the results, primarily on the sum
rule derived from the optical conductivity. We reduced this effect by merging our data to vacuum ultravi-
olet spectra. At still higher frequencies, we terminated the transform using R ∼ 1/ω4, the free electron
asymptotic limit.
Kramers-Kronig analysis is not as commonly applied to transmittance as it is to reflectance. Nevertheless,

the transmittance of a film is subject to the same causality restrictions as the reflectance; consequently, one
may estimate the phase shift on transmittance from a Kramers-Kronig integral, much as one does for
reflectance. The requirements for utilizing this procedure are threefold. First, one needs a free-standing,
uniform-thickness film with surfaces parallel to a fraction of the wavelength. In principal one could work
with a thin film on a thick substrate, but the requirement on parallelism would become extreme, subsequent
analysis would need to sort out the coherent multiple internal reflections in the substrate, and the spectral
resolution would need to be good enough to measure these interference fringes. Second, wide spectral
coverage is required. Third, reasonable photometric accuracy, O(1%), is needed. Transmittance is easier
than reflectance in this regard, because the results are far less sensitive to alignment and to inaccuracies in
placement of reference.
After computing the phase, one may extract the complex refractive index (and all other optical constants)

by numerical solution of
√

T eiθ =
4N

(N + 1)2e−iδ − (N − 1)2eiδ
, (7)

where δ = ωNd/c, N is the complex refractive index, and is d the thickness of the film. An important
detail is that the phase gained by the radiation in passing through a thickness d of vacuum must be added
to δ before calculating N .
A third method of obtaining σ is to measure both transmittance and reflectance; from these two mea-

surements one may calculate directly the real and imaginary parts of the conductivity. For a film which
has thickness d � λ, the wavelength of the far-infrared radiation, and d � {δ, λL}, the skin depth (nor-
mal state) or penetration depth (superconducting state), the transmittance across the film into the substrate
and the single-bounce reflectance from the film are both determined by the film’s dimensionless complex
admittance y according to

Tf =
4n

(y1 + n + 1)2 + y2
2
, (8)

and

Rf =
(y1 + n − 1)2 + y2

2

(y1 + n + 1)2 + y2
2
, (9)

where n is the refractive index of the substrate and y1 and y2 are respectively the real and imaginary parts of
the admittance, which is related to the complex conductivity σ = σ1 + iσ2 of the film by y = Z0σd where
Z0 is the impedance of free space (4π/c in cgs; 377Ω in mks).Although Eqs. (8) and 9 describe the physics
of the thin film on a thick substrate, the external measured transmittance and reflectance are influenced by
multiple internal reflections within the substrate (thickness x, refractive index n, and absorption coefficient
α) and are equal to

T = Tf
(1 − Ru)e−αx

1 − RuR′
fe

−2αx
, (10)
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Fig. 2 (online colour at:
www.ann-phys.org) Optical
conductivity of YBa2Cu3O7 at
three temperatures for fields
polarized along the a (left
panel) and b (right panel) axes.

and

R ≈ Rf +
T 2

f Rue
−2αx

1 − RuR′
fe

−2αx
, (11)

where R′
f = [(y1 − n + 1)2 + y2

2 ]/[(y1 + n + 1)2 + y2
2 ] is the substrate-incident reflection of the film,

and Ru = [(1 − n)2 + κ2]/[(1 + n)2 + κ2] ≈ [(1 − n)/(1 + n)]2 is the single-bounce reflectance of the
substrate. The approximation holds when κ = cα/2ω � n as is the case for weakly absorbing media.
Measurements of T andR at each frequency determine σ1 and σ2. Beginning with the pioneering work of
Palmer and Tinkham [19] this approach has been used a number of times to obtain the optical properties of
thin films.

5 Results for optimally-doped samples

We begin with the far-infrared–midinfrared optical conductivity along the a and b axes of a single-domain
YBa2Cu3O7 crystal. The data, in Fig. 2, are shown up to 3000 cm−1 in order to illustrate the non-Dude
midinfrared band. Two curves are measured above Tc (300 and 100 K) and one below (20 K). Also shown
are fits using a two-component model (full line) and the Drude portion of this model (dashed line). Similar
data have been shown by a number of groups [20–23].
The non-Drude character is seen most clearly by the minimal temperature dependence above about

1000 cm−1. The dc conductivity is changing by almost a factor of 3 from 300 to 100 K whereas σ1(ω >
1000 cm−1) varies by only about 10%. In contrast, as can be seen by comparing to the fit, the normal-
state data below about 300 cm−1 are well described by the Drude model. The dc intercept is about 3200
Ω−1cm−1 (or ρ = 310 µΩ-cm) at 300 K and 7500 Ω−1cm−1 (ρ = 130 µΩ-cm) at 100 K for E ‖ a and
6000 Ω−1cm−1 (ρ = 170 µΩ-cm) at 300 K and 27,000 Ω−1cm−1 (ρ = 37 µΩ-cm) at 100 K for E ‖ b.
The superconducting-state data have a Drude-like upturn at the lowest frequencies. This residual absorp-

tion is seen in many cuprates below their transition temperature [20,22,24–26]. It can be described by a
Drude model, with a much smaller spectral weight than above Tc.
The low frequency behavior in a YBa2Cu3O7−δ thin film is shown in Fig. 3. Here, the conductivities

were extracted from combined transmittance and reflectance measurements. Substrate phonon absorption
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Fig. 3 (online colour at: www.ann-phys.org) The upper panels show the real part of the optical conductivity
of aYBa2Cu3O7−δ thin film at temperatures above and below Tc. The lower panels show the corresponding
imaginary conductivity.

limits the data to frequencies below 120–150 cm−1, depending on temperature.At 300 K, σ1(ω) is very flat
and is in accord with the dc resistivity, suggesting that the scattering rate is much larger than 120 cm−1, as
expected. σ2(ω) increases more or less linearly with frequency, and is smaller than σ1(ω). With decreasing
T > Tc, σ1(ω) grows and develops a negative slope, and σ2(ω) also grows and the positive slope increases.
At 100 K, σ1(150 cm−1) is about half the dc intercept, suggesting that 1/τ(100 K) ≈ 150 cm−1.

Just belowTc (75K), σ1(ω) becomes obviously narrower, a behavior that we interpret as due to a collapse
of the quasiparticle scattering rate in the superconducting state [18,27–30]. Finally at 50 K and 20 K, the
Drude spectral weight decreases, as the condensate delta function at zero frequency [31] grows in strength.
The delta function dominates σ2(ω), giving it a 1/ω behavior as expected from Kramers-Kronig. Still, a
notable “normal-fluid” part remains below Tc [32].

Bi2Sr2CaCu2O8 also has a definite Drude-like character at low frequencies. Figure 4 shows the real and
imaginary parts of the conductivity for a thinBi2Sr2CaCu2O8 crystal, obtained fromKramers-Kronig analy-
sis of transmittance.Only thenormal-state data are shown.Temperature-dependent spectra ofBi2Sr2CaCu2O8
have been reported by a number of workers [18,33–35].As temperature decreases, the Drude peak in σ1(ω)
grows higher and narrows. Note that with decreasing temperature, the low frequency conductivity increases
and the high frequency conductivity decreases. The crossing of each curve with its neighbors occurs near
or at the geometric mean of the relaxation rates, as expected for a Drude metal. The behavior of σ2(ω) tells
the same story, showing a peak that moves to lower frequencies as temperature decreases.

The data in Fig. 4 look a lot like the Drude curves in Fig. 1. This is no surprise, as the parameters were
chosen from fits to these data. The 100 K fit and its Drude portion are also shown in Fig. 4. The fit to the
data is good; the Drude curve separates from the data around 200 cm−1 and becomes a factor of two below
it at 500 cm−1.
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Fig. 4 (online colour at: www.ann-
phys.org) Optical conductivity of
Bi2Sr2CaCu2O8 at six temperatures
above Tc. The left panel shows σ1(ω)
and the right panel shows σ2(ω). Fits
to the 100K data are shown alongwith
the Drude component of the conduc-
tivity.

6 Discussion for optimally-doped samples

One characteristic of the Drude picture of charge transport in metals is that the carrier density is temperature
independent, so that the temperature dependence of the conductivity comes from the relaxation rate or mean
free path’s temperature dependence. The scattering of the charge carriers comes in part from their interaction
with thermally-generated excitations in the metal, such as the phonons. The details of 1/τ are governed by
the details of the phonon density of states, the electronic band structure, and the electron-phonon coupling.
At high temperatures, most of these details get washed out, and [36,37]

�

τ
= 2πλkBT +

�

τ0
, (12)

where λ is a dimensionless electron-phonon coupling parameter and 1/τ0 the zero-temperature intercept,
the residual scattering rate.
Fig. 5 shows the fitting parameters ωpD and 1/τ for the Bi2Sr2CaCu2O8 samples. The data come from

a least-square minimization of fits to the measured transmittance. Error bars are shown, and are typically
smaller than the plotted points. Very similar values have been found in single-domain Bi2Sr2CaCu2O8
crystals from transmittance [18] and reflectance studies [33].Moreover, similar data forYBa2Cu3O7−δ films
has been shown by Gao et al. [27,32] The plasma frequency is essentially constant until superconductivity
sets in. The Drude plasma frequency falls once the superfluid density begins to build up; in these samples,
it is immeasurably small below 50 K.
The normal-state scattering rate is linear and extrapolates to nearly zero at zero temperature, a remarkable

behavior that is typically seen in the resistivity of optimally-doped crystals [1]. The slope (Eq. (12)) gives
λ = 0.37. At the superconducting transition, the scattering rate, which represents the width of the low-
energy Drude contribution below Tc, falls rapidly towards zero [18,27–29].

7 Results for underdoped samples

The ab-plane far-infrared conductivity of optimally and underdoped Bi2Sr2CaCu2O8 is shown for several
temperatures in Fig. 6. From left to right in the figure the data are for Tc = 35, 40, and 85 K respectively.
The optical response of all samples is metallic, i.e., when the temperature is lowered from 300 K, σ1(ω)
increases at the lowest frequencies, in accord with the dc resistivity. (Dc conductivity values, when known,
are shown as squares at ω = 0.) For T > Tc, σ1(ω) is strongly suppressed in underdoped samples over the
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614 H.L. Liu et al.: Drude behavior in cuprate superconductors

Fig. 5 (online colour at: www.ann-phys.org) The up-
per panel shows the Drude plasma frequency ωp and the
lower panel the Drude relaxation rate, 1/τ as a function
of temperature.

Fig. 6 (online colour at: www.ann-phys.org) Optical conductivity of optimally-doped (right panels) and
underdoped (center and left panels) Bi2Sr2CaCu2O8. The upper row shows σ1(ω) and the bottom row
σ2(ω).
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Fig. 7 (online colour at: www.ann-phys.org) Optical conductivity of optimally-doped (right panels) and
underdoped (center and left panels)YBa2Cu3O7−δ . The upper row shows σ1(ω) and the bottom row σ2(ω).

entire infrared frequency range.Nevertheless, the conductivity below300–400 cm−1 remains approximately
Drude-like: a zero-frequency peak, which grows and sharpens as temperature is reduced toward Tc. The
temperature dependence at frequencies above about 500 cm−1 is relatively modest; it is in fact mostly due to
a narrowing of the Drude-like peak at zero frequency. Below Tc, there is a transfer of oscillator strength from
the far-infrared region to the zero frequency δ-function response of the superconducting condensate [31].
The spectral weight lost at low frequencies in the superconducting state is large in the nearly optimally
doped samples while in the most underdoped samples it is very small and a substantial Drude-like peak
remains.
The lower row in Fig. 6 shows σ2(ω) at three temperatures. As in the case of optimally doped samples,

the imaginary part of the conductivity shows a maximum in the far infrared that shifts to lower energies at
lower temperatures. As the temperature is lowered below Tc, σ2(ω) develops a 1/ω trend, with σ2 > σ1.
This behavior indicates that the inductive current dominates the conduction current in the superconducting
state. Here, the conductivity looks like that of perfect free carriers: σ2(ω) = nse

2/mω The reduction of ns

in the underdoped samples is quite evident.
The temperature dependence of the ab-plane far-infrared conductivity of optimally and underdoped

YBa2Cu3O7−δ is shown in Fig. 7. From left to right in the figure the data are for Tc = 40, 75, and 92 K
respectively. The optical response of all samples is metallic, i.e., when the temperature is lowered from
300 K, σ1(ω) increases at the lowest frequencies, in accord with the dc resistivity. (Dc conductivity values,
when known, are shown as squares at ω = 0.) For T > Tc, σ1(ω) is strongly suppressed in underdoped
samples. Nevertheless, the conductivity below 300–400 cm−1 remains approximately Drude-like, at least
for the lower temperatures. σ1(ω) at 300 K has a shoulder that is probably related to the non-Drude
midinfrared absorption. Below Tc, there is a transfer of oscillator strength into the δ-function response of
the superconducting condensate. The spectral weight lost at low frequencies in the superconducting state
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616 H.L. Liu et al.: Drude behavior in cuprate superconductors

is large in the nearly optimally doped samples while in the most underdoped sample it is very small and a
substantial Drude-like peak remains.
The bottom row in Fig. 7 shows σ2(ω). The imaginary part of the conductivity shows a maximum in

the far infrared that shifts to lower energies at lower temperatures. Below Tc, σ2(ω) develops a 1/ω trend,
indicating that the inductive current dominates the conduction current in the superconducting state. The
reduced superfluid density is quite evident in the underdoped samples of Fig. 7.

8 Discussion for underdoped samples

The underdoped samples have a lower conductivity than do the optimally-doped samples. Now, the con-
ductivity ne2τ/m is controlled both by the low-energy spectral weight (n/m or ω2

p) and by the scattering
time τ . It is a reduction of spectral weight that causes the lower conductivity. Fits to the reflectance find
values for the plasma frequencies, ωp, and other transport properties, shown in Table I. These were found
by fitting the reflectance to a Drude-Lorentz model, and using Eq. (12) to extract λ, and 1/τ0 from the
temperature-dependent scattering rate. These scattering rates are shown in Fig. 8. All the samples show a
normal-state 1/τ linear in T , with about the same slope, giving λ ∼ 0.35.

Table 1 Drude plasma frequency, ωp, coupling constant, λ, and the zero-temperature intercept, 1/τ0, for
six materials.

Materials Tc (K) ωp (cm−1) λ 1/τ0 (cm−1)

Bi2Sr2CaCu2O8 85 9000 0.40 9

Y 35% 40 5600 0.29 85

Pb 50%,Y 20% 35 6100 0.29 185

YBa2Cu3O7−δ 92 9800 0.38 2

Pr 15% 75 8700 0.36 135

Pr 35% 40 6800 0.38 252

Despite the large difference in Tc, the coupling constant λ is about the same in these materials. The
scattering rates vary mostly in their intercept. The intercept is usually considered to be a measure of disorder
in the sample. However, it is in no way clear that Matthiessen’s rule [36], is applicable in these materials.
Note, moreover, that the linear extrapolation passes well above the values of 1/τ found below Tc.
It is interesting to compare the scattering rate with the dc resistivity data. The dc resistivity [38–40] of

underdoped crystals is linear function in T for T > T ∗, but shows a crossover to a steeper slope at T < T ∗.
If the temperature dependence of the normal-state resistivity ρ = (m/ne2)(1/τ) were attributed entirely
to the scattering rate, then the change at T ∗ would be attributed to the low-frequency, low-temperature
suppression of the scattering rate. Because our measurements remain linear within error bars, they do not
show any effect of the pseudogap. The linear-T behavior in 1/τ is found in all samples, as shown in Fig. 8.
The limited number of points and overall uncertainties of 3–5% prevent us from determining whether the
observed deviation from linearity below T ∗ in dc resistivity data is seen in the scattering rate. However,
a strong suppression in scattering, as suggested by some 1/τ(ω, T ) results [25,41], is not observed in the
Drude-like component of the optical conductivity.

9 Conclusions

The Drude model gives a good description of the low-energy, normal-state properties of the cuprates. So
long as one’s view does not extend much above 200–300 cm−1 (25–40 meV), the optical properties are
dominated by the response of free carriers. The Drude contribution has nearly constant spectral weight as

c© 2006 WILEY-VCHVerlag GmbH & Co. KGaA, Weinheim www.ann-phys.org
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Fig. 8 (online colour at: www.ann-
phys.org) Temperature-dependent Drude
scattering rates for underdoped Y-
Bi2Sr2CaCu2O8 and optimally-doped
Bi2Sr2CaCu2O8 (upper row) and un-
derdoped Y1−xPrxBa2Cu3O7−δ and
optimally-doped YBa2Cu3O7−δ (lower
row).

temperature is varied while the scattering rate is nearly linear in T . A residual Drude-like normal fluid is
seen in the superconducting state; the scattering rate of this quasiparticle contribution collapses at Tc.
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