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Although there has been a great deal of recent activity on possible
structures and some of the statig properties of quasi-periodic and quasi-
erystalline phases, some fundamental questions still remain about the
dynamics, possibilities of commensurability and pinning, and the nature
of the states for such systems. Since three-dimensional realizations of
such structures, with sufficient perfection and characterization to allow
meaningful studies, are not yet available, we describe some experiments
on artificial two-dimensional structures which answer some of these
questions experimentally. The main results are attained on
superconducting networks, where the application of a magnetic field
allows us to see the generalization of commensurability pinning for a
variety of quasi-crystalline, quasi-periodic and disordered structures.

1. Introduction

Although there are many examples of quasi-periodicity in nature, we are
just beginning to understand some of its most fundamental consequences .
In particular the electronic states that one might find in a quasi-
periodic potential have been under investigation for quite some time, but
the exact spectra for a few well-defined models has only been available
over the past 10 years [1]. Quasi-periodic potentials have often been
studied as ‘'intermediate’ between disordered and periodic. Like
disordered structures they lack translational symmetry. Like periodie
structures the potential can be described throughout space by specifying
a few variables locally.

In quasi-periodic potentials, such as the superposition of two
incommensurate sine waves, the distance between two equivalent points can
take on an infinite number of values, from zero to the shorter
wavelength., Recently it has been shown that quasi- periodic structures
with a finite number of lengths can be mathematically constructed in any
number of dimensions [2]. We will take as the definition of 'quasi-

. erystals' quasi-periodic potentials with a finite number of lengths.
This introduces a new step in going from disordered to crystalline:
disorder -) quasi-periodic -)> quasi-crystal -) crystal. Recently the
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discovery of an icosahedral phase of quenched A1Mn [3] has led to a great
deal of work on quasi-crystals.( Icosahedral symmetry is not allowed for
conventional crystals, but can occur in quasi-crystals.)

Unfortunately very little is known about the spectra of quasi-
periodic or quasi-crystalline systems. Theoretically the only problems
which have been solved are one dimensional [4]. Experimentally there
have been no detailed measurements of the spectra in any number of
dimensions. There was hope that with the discovery of the icosahedral
AlMn experiments could be performed on three-dimensional quasi-
crystals, but as we shall see the samples are not yet of sufficient
quality to allow detailed experiments. The 'novel’ idea which is the
nucleus of this talk is to artificially make quasi-periodic, quasi-
crystalline, disordered and crystalline arrays so that the structures
themselves are very well defined and then to study their physical
properties, It is not easy to make large-scale structures (many basic
units) of arbitrary symmetry in three dimensions, so we are limited to
one or two dimensions, There already has been some work done on one
dimensional quasi-crystals. Theoretically the 'Fibonacci’ spectrum is
known [1], and experimentally 'Fibonacci lattices’ have been made by
varying the spacings of multilayer structures [5]. Since we wanted to
explore virgin territory we decided to work in two dimensions.

The easiest way to make two-dimensional structures of any pattern
is to use a plotter connected to a computer. If you want to do more than
diffraction experiments you must adapt the plotter to use other than
paper and ink. In some experiments currently under way we use the
plotting pen to apply epoxy dots to a rubber sheet. Then the sheet is
mounted in a frame and we look at the 'drum’ mode resonances. The epoxy
mass loads the thin sheet and allows an evaluation of the phonon spectsum
for the two-dimensional structure. It is not difficult to put down 10° -
105 epoxy plots on a 10cm x 10cm rubber sheet., It is also possible to
substitute an electron beam and resist for ink and paper, and therefore
microlithographically make a two-dimensional metal film. If the metal is
superconducting we can perform flux quantization experiments on it and
learn something about the electron spectrum using the macroscopic
wavefunction of the superconductor.

2. Experiments on Icosahedrally Packed Al-Transition Metal Alloys

Before reporting on the artificial structures, we summarize what we
have learned from the remarkable icosahedral phases discovered by
Shechtman et al, Most of the experiments that have been published on
these materials, Al Mny, (x~0.2), are structural studies using electron
diffraction from smajl_f crystallites or x-ray powder patterns [3,6]. The
scattering studies show sharp diffraction peaks. A ‘usual’ interpretation
would lead to a translational coherence length of the order of several
hundred Angstroms. The icosahedral orientational order, however, is much
larger, namely on the scale of microns. Since one interpretation of the
scattering experiments is that the system is quasi- crystalline, we
decided to do a number of transport, elastic and magnetization
measurements .,

Our most interesting result is that the resistivity is extremely
high, p~ 200 p-cm * 50% (and sometimes as high as 700pQ-cm), indicating
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Figure 1. Low-Temperature resistivity of icosahedral phase Al gMn ,.

a mean free path of less than 5 Angstrom , comparable to that in a
metallic glass. Moveover, from 1-10K, the conductivity decreases with
decreasing temperature with a form, o = o, + M‘l‘f2 characteristic of
weak localization in three dimensions (Fig. 1). The conclusion we would
like to draw from these studies is that the states in a three-dimensional
quasi-crystal are weakly localized . However, the systems are
sufficiently complex that it is not possible to prove this conjecture.
The complications arise from a combination of the following factors: 1)
Mn is magnetic in Al and in the present samples may show effects due to
resonant d levels near the Fermi level Eg, spin fluctuations, the Kondo
effect and the formation of a spin glass. 2) The 'stoichiometry’ (x=.16-
Al with some percentage of Mn, makes up an unknown (<<10%) of the
samples, 3) The icosahedral phase may have substitutional disorder (e.g.
as in brass). 4) The icosahedral phase may be a 'random’ stacking of
oriented icosahedral units rather than a quasi-crystal [7]. 5) The
icosahedral phase may be a quasi-crystal with a large number of defects
andfor phason strain fields.

We have eliminated many of the above objections through
magnetization, thermopower and magnetoresistance measurements on a
variety of samples (AlRe, AlRuMn, A1SiMn) and all of our results point to
small mean free paths and weak localization. The question of
substitutional disorder and the possibility of it being an icosahedral
glass remain unresolved and require knowledge of the atomic positions.
Nonetheless, a perturbative treatment of the low-temperature conductivity
requires input simply from the structure factor S(q) and there does not
appear to be sufficient diffuse scattering to account for the small mean
free path,.

3. Flux Quantization on Periodic Arrays

The idea of using superconductivity to probe solutions to Schroedinger's
equation is an old one [8]. The superconducting order parameter has an
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amplitude and a phase similar to that of a wavefunetion, and in mean
field is the solution to the Ginzburg-Landau equations. The minimization
of the Ginzburg-Landau free energy with respect to the order parameter
gives two equations, known as the GL differential equations. After
linearization (appropriate at the normal-superconducting phase boundary),
one of these is formally the same as Schroedinger’s equation, while the
other is the quantum-mechanical expression for the current due to a
wavefunction.

The wavefunction - order parameter must be single valued, thus the
phase integral around any closed loop must be 2x times an integer. In
the presence of a magnetic field this quantization criterion becomes [9]

4n 1
Ug-dl = — | a2J.d1l + — | A-dl= 27n (1)
cll, o

where & is the flux quantum (he/2e) = 2x1077 gauas-cmz. and A is
the penetration depth. The integral over the vector potential is just
the flux through the loop and the phase integral (known as the fluxoid)
must always be quantized. If the magnetic field H, through the loop is
exactly an integral number of flux quanta eq. 3 13 satisfied with no
currents circulating the loop. Then the additional kinetic energy(E=J32)
is a minimum and the transition temperature is a maximum. In the case of
a single circular loop E ~ AT =(Ua)2(n—!;‘! 032. where n is an integer
giving the number of fluxoids ?Ln the loop, and the phase boundary is as
shown in Fig. 2. This is the beautiful result demonstrated in the work
of Little and Parks [9].

AT
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Figure 2. Decrease in transition temperature vs. flux through a single
loop as in the experiment of Parks and Little[9].

The problem becomes considerably more complex when we deal with a
periodic network [10]. The fluxoid is quantized on every closed path.
To understand qualitatively what we might expect, it is convenient to
imagine the limit where the wires which make up the network have a
diameter which is much larger than the penetration depth but much smaller
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than the unit cell dimensions. In the center of the wire the currents
are then negligible and the flux through any closed path (through the
middle of the wires) is quantized. In this limit the currents flowing on
the surfaces of the wire must produce a magnetic field which makes up the
difference between the applied flux and an integral number of flux
quanta. The 'rules’ for this simplified calculation are then current
conservation at each node, and an average field for the entire network
which is equal to the applied field. For example,an applied field
H(ﬂofaz (a2 is the area of a unit cell or an elementary tile) would
correspond to a fraction f of the elementary cells having a penetrating
flux quantum and (1-f) having zero flux with f!o{az = H . The
currents required for this arrangement can be calculated and the kinetic
energy and ATc evaluated. The experimental situation can be
qualitatively recovered by realizing that the actual currents are much
smaller than the ones calculated in the above approximation and the
tiles containing integer flux quanta are to associated with tiles
containing the same integer fluxoids. (The screening currents for most
experimental situations are very small. They produce very little field
modulation and to lowest order the magnetic field is uniform. However
the actual currents are similar to those obtained by the recipe above and
thus the Tc shift is qualitatively correct in its dependence on magnetic
field.)

If we ignore correlations between occupied and unoccupied tiles (a
sort of mean field treatment) then we can proceed to calculate the
currents. In an applied field H=f!01a2, f cells or tiles require a
current proportional to !0(1-f) while (1-f) tiles require a current
proportional to lof.In this situation all tiles will satisfy flux
quantization. The average current is zero (as it must be to insure the
average field as the applied field), however the average squared current
circulating around each tile is f(1-£)20o2+(1-0)f 20 %= (1-1)2,2=0(2-9)
for f¢1. The above arguments are easily generalized to any field and we
have AT ~(2/2,-m)(m+1-2/2,) for all f, (m is an integer). Thus for an
infinite network ATc is zero for H=0 and for H=nﬂo;a2, but it increases
linearily as H varies from these points rather than quadratically (as for
the single loop problem).

The periodicity is again in terms of an integral number of flux
quanta per tile but we now have cusps instead of parabolas at each
ninimum. The cusps result from the fact that for an infinite system
when we have a field where each tile is satisfied, a slightly different
field corresponds to adding a few additional widely separated flux quanta
The energy cost is thus linear with the deviation from the fully
satisfied case in which there are no currents.

There are additional structures at nonintegral flux quanta per tile
which result from the correlations which we have neglected above. The
most straightforward example is the case where H=m°{2a . If we randomly
fi11 half of the tiles the result is ¢J25=1/32. However, if we correlate
the tiles with flux quanta so that they only share edges with tiles
without flux (as a checkerboard for the square lattice) then the kinetic
energy is decreased to <J2)=1!64. Similarly, there is a favorable
correlated arrangement of the flux quanta, forming a flux lattice, for
any rational fraction of a flux quantum per tile[10]. This is equivalent
to having a flux lattice commensurate with the underlying periodic
pattern.
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A more rigorous treatment for the phase boundary of a
superconducting network is found in References 11 and 12, where the
linearized Ginzburg-Landau equations are treated with the constraint of
current conservation at each node.

; o
= ﬁi j Qﬂt(eij) + J ﬂj e lain(&ij) = 0 . (2’

For regular networks, with all lengths equal, the above
eigenvalue problem is the same as that for an electron on a similar
tight binding lattice in a magnetic field [11,12]. The eigenvalue which
corresponds to the energy in Schroedinger’s equation determines the
coherence leﬁgth, &, in the Ginzburg-Landau case, e=cos(a/f). Since { ~
to{Tco—T)_1/ the maximum eigenvalue corresponds to the transition
temperature. The best known example is the square lattice where the
highest eigenvalue (corresponding to the Tc(H) phase boundary) is the top
of the spectrum solved by Azbel and Hofstadter [13] . Again, this phase
boundary shows cusps at every rational field.

We now want to see what happens when we try the same experiment on
quasi-periodic or quasi-crystalline networks.’ In the quasi-crystalline
case there are two fundamental differences from the regular periodic
networks. There are at least two different tiles with irrationally
related areas. It is therefore not possible to find a field which puts
an integral number of flux quanta in each tile and this should
dramatically affect the large-scale structure. However, the fine
structure is most interesting since it relates to the 'commensurability’
of the flux lattice with the network. With a quasi-periodic system it is
not even clear what commensurability should mean.

4. Experiments on Quasicrystalline Arrays

The samples were fabricated at the National Research and Resource
Facility for Submicron Structures at Cornell using electron beam
lithography. A typical pattern consisted of 400x400 tiles with a tile
area of 1-4 square microns. The network wires were aluminum, 500
Anstroms thick by 3000 Angstroms wide, deposited on a silicon wafer. The
patterns were written under computer control using a Cambridge EBMF-2-150
Electron Beam Microfabricator.

Qur first series of samples are 'one-dimensional’ patterns
consisting of a set of periodic parallel lines along y crossed by
periodiec, quasi-periodie, quasi-erystalline, random and several other
patterns along x. The one-dimensional structures have two advantages:
1) they are considerably more variable (two or more dimensions puts
constraints on many of the parameters in a quasi-crystal) and 2) it is
possible to analyze the results theoretically, using the periodicity in
the y direction. For the two-dimensional quasicrystal we used an eight
fold generalization of a Penrose tiling. In Fig. 3 we show the optical
micrographs along with the Fourier transforms of some of our networks .

In Fig. 3a is shown the 'Fibonacci'’ pattern which consists of two
tiles with relative area v = 1.618... (the golden mean) arranged in a
Fibonacei sequence [2]. The number of large tiles is ¢ times the number
of small tiles. The Fourier spectrum [2] consists of a dense set of
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points at (n+mt)/a reflecting the quasi- periodicity with two frequencies
related by v . In the present Fibonaceci pattern all of the
incommensurate ratios are given by t. In order to distinguish the
effects of quasi- periodicity from that of the irrational area ratio we
have made a ‘random Fibonacci' pattern, shown in Fig. 3b., The ratio of
the area of the tiles is t and there are t times as many large as small,
as in the Fibonaceci. However the tiles are randomly arranged. The
optical transform reflects this in showing a broad diffuse scattering
instead of distinct Bragg peaks. (But there is a rather sharp spot at
q=(5/3)(2n/ag) which comes from the Hendricks-Teller effect.[14])

The phase boundéry Te(H) for the Fibonacei and random Fibonaceci
patterns are shown in Fig. 4. A quadratic background due to the finite
thickness of the aluminum wires has been subtracted. It is immediately
clear that neither pattern is periodic and that, although similar in

_.
Figure 3. Optical Micrographs and Optical diffraction patterns for: a)
'Fibonacel Lattice’, b)'Random Fibonacei, c¢) 'Eight—fold Penrose Tiling'.
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Figure 4. Experimental data on the phase boundary for a) the Fibonacci
Lattice and b) the Random Fibonaceci pattern.

gross features, they are different in detail. In particular there are
large dips in both curves which, in analogy to the periodic network,
should reflect the area or areas of the tiles. However there is no fine
structure in the random Fibonacci and a lot of fine structure in the
Fibonacci. This immediately tells us that the quasi- periodicity is
important and that the flux lattice has found a way to be commensurate
with the quasi- crystal.

The large-scale structure in both Fibonacci and random Fibonacci is
easy to understand. The transition temperature for a given field would
return to zero-field value if we could put an integral number of flux
quanta in each tile [10]. In the infinite field limit we could do
this. For finite fields we can approximate flux quantization at fields
which correspond to rational approximates to =
(M/N=1,2,3/2,5/3,8/5,13/8, ete.,). If we put M flux quanta in the small
tiles and N in the large tiles then the average field is H=(M+Nt)/(1+t2).
For the low rational approximates (M,N) = (1,1), (1,2), (2,3), (3,5).
(Fn,Fn+1), corresponding to applied fields of M/Ho = 1, =, ‘ti. 'c; ’
++,%0 where Ho = 2p/a 2) (1+1) /(142 2), Hy is the field which corresponds
to one flux quantum in each tile. Thus the largest structures which
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occur in T (H) for both Fibonacci and random Fibonacei are again related
to the properties of the elementary tiles.

In order to proceed further we turn to the network equations of
references 11,12. It is a straightforward matter to write down the
coupled equations for the Fibonaccli sequence using its generating
function Xp=0+(1/T)INT(m/t), defining Ap=Xp 41 *p» and using equation 2

Apnl 2sin(ra/g)cos(a/E) + cot(Ay ja/f)sin(a/E)sin(ra/E)

+ cot(Aja/g)sin(a/§)sin(ra/g) 1
-sin(a/g)sin(va/) [Ay_q n/sin(Ay_qa/8) + Apyq p/sin(Aga/g)]
—sin(za/E) [Ap ,4qexp(iyxja) + Am'n_lexp(—i-rxma)] =0 ¥ (3)

We are using a Landau gauge, (0,Hx), with y=eH/hc. The only place where a
'y' dependence enters the equation is in the last terms on the right,
involving the nodes m,n+1 and m,n-1. The form is such that the solution
must merely contain a Floquet factor and hence the problem reduces to one
dimension. However the eigenvalue problem still needs computer
solutions. Evaluated on a 23x23 network we find the normalized phase
boundary shown in Fig. 5. The computation reveals the major dips at
factors of t predicted above and some of the fine structure seen in the
experiment. In fact the calculation fits the experiment remarkably well
although the experiments have finer structure. An additional feature
which appears in the calculation is a quasi mirror symmetry about the
points (t0+0*1)/2 which extends from 0 to <% + <P+l [15],

.50

.40

.30

AT
.20

1
'D% S. 10 15 20 25

Figure 5. AT_ vs. w! calculated from the linearized GL equations for
the Fibonacof Lattice.

The Fibonacci and the Random Fibonacei patterns tell us much that we
want to know about flux quantization in quasi-periodic networks. The
features due to the areas of the tiles dominate the phase boundary and
the main dipa which were at nk,/a for the periodic case now vary as
( 2,/a )e". We have also seen that fine structure is present only in the
ordered quasi-periodic network indicating the importance of the long
range coherent structure for the flux lattice commensurability. This

138



‘locking in’ of the flux lattice is also indicated by the important
observation that many dips in the Fibonacei lattice are ‘'cusp-like’,
while those in the random Fibonacci are all quadratic. Unfortunately the
interpretation of each dip in the 'one-dimensional’ patterns is difficult
» because the periodicity along y actually complicates a simple labelling
scheme.

OQur two-dimensional quasi-crystal is the eight fold version of a
Penrose tiling (a Penrose tile could not be fabricated since the E — Beam
Fabricator cannot draw lines at 72° angles), fig. 3c. It consists of two
tiles, a fat and a skinny, with area ratio ﬂ~2%. Unlike the Penrose
tiling there are more skinnies than fats by the ratio @ . However the
quasi-periodicity is characterized by the number o=1+Q, that is the
pattern is generated by an inflation scheme with each inflation changing
characteristics distances by o. The average field for N (Ng) flux
quantum in every fat (skinny) tile is
H=(0 Ng+Np)®, /( 20)A5=(0)2,/(20)Ag. We expegt the biggest effects for
rational approximates to the area ratio =24, The lowest few are the
pairs (Ng, Ng) = (1,1), (3,2), (7,5) which correspond to average fields

H/Ho=1,0 ,o02 as indicated in Fig. 6. It 1is interesting that the
parameter that comes in when we are trying to rationalize the area ratio
N, 1is the quasi-periodiecity ratio o. This is of course not accidental,
but comes from the restrictions in forming quasi-crystals.

Aside from the 'major dips' there are smaller dips between the
values H/Ho = o®. These dips correspond to the flux lattice finding
favorable configurations on the quasi-crystalline substrate. There
should of course be dips everywhere, but the largest ones in the present
case can be readily indexed by H(n,m) = Ho(n+mo) with n,m positive and
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Figure 6. Experimental Data on the transition temperature vs, applied
field for the 'Eight fold Penrose tiling'.
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negative integers. The combination which yields fields less than o?
with n,m less than 4 are shown in Fig. 6. Most are readily identified.
Thus the system which replaces the rational fields H = (p/q)Ho for the
periodic structure is H=Ho(ntmo) for the quasi-erystalline networks. It
is worth pointing out that for quadratic irrationals, say B, p/q is in
general not a member of n+mp, whereas sp” is a member (n,m,p,q,s.,t
integers). Thus some combinations of n+me may be viewed as deflations
of the quasierystal. It is not unreasonable that a flux lattice may lock
in or show epitaxy with a deflation of a quasi-crystalline network.

Our results on the'Fibonacci’sample and the eight-fold Penrose
tiling suggest the generalization of the concept of commensurability to
include superstructures on whose Fourier transform the fourier transform
of the original structure is completely found. This definition works
equally well for the sparse points which are the reciprocal lattice for
conventional crystals and the dense points which form the diffraction
pattern of quasi-crystals.

Unfortunately we cannot calculate the expected phase boundary for
the two-dimensional patterns. As discussed earlier the problem is
equivalent to solving the electronic structure which is not yet possible.
However we see that the main features are similar to what has been seen
in the one-dimensional quasi- crystals: large dips at o, fine structure
and the remarkable quasi-reflection symmetry about (P+a*1y 2 |

The use of artificial structures and in particular superconducting
networks can be useful for studying the properties of other patterns as
well. Self-similar ordered fractals such as Sierpinski gaskets have
been made [16] and random fractals such as percolation clusters are
being studied along with quasi-periodic systems.

In conclusion,we have prepared a series of superconducting networks
in the form of periodic, quasi- perilodic , quasi- erystalline and
disordered patterns. Our main result from this study is that a flux
lattice can be commensurate with a quasi-crystal. This implies that it
should be possible to grow epitaxially (at other than the trivial 1:1
case) on a quasi- crystalline substrate. We have also shown the utility
of such artifical patterns for gaining insight into some unsolved
problems in new structures with unusual symmetries and construction.

Part of this research is supported by NSF under grants DMR83-18060
(M. J. B.) and through the Laboratory for Research on the Structure of
Matter, DMR85-19059 (A. B.)
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