American Physical Society, Annual March Meeting, March 12 - 16, 2001, A27.011

Temperature Dependent Excess Quasiparticle Relaxation in Nb, Nb(Ti)N and BaPb_xBi_{1-x}O₃

G.L. Carr¹, R.P.S.M Lobo², D.H. Reitze³, D.B. Tanner³, P. Bosland⁴, D. Kim⁵, E Choi⁵, M.J. Burns⁶

¹Brookhaven National Laboratory
²CNRS-Orsay
³University of Florida
⁴CEA-Saclay
⁵Seoul University
⁶Jet Propulsion Lab

Far-infrared, pump-probe spectroscopy has been used to measure the relaxation of excess quasiparticles in Nb, Nb(Ti)N and BaPb_xBi_{1-x}O₃ thin film superconductors. We have measured both the effective recombination time (tau_{eff}) and the relative excess quasiparticle density (n_{qp}/n_0) from 0.25T_c up to T_c. The temperature-dependent results were analyzed using a linearized form of the Rothwarf-Taylor equations that takes into account the phonon bottleneck for quasiparticle recombination. The behavior of tau_{eff} and n_{qp}/n_0 is sensitive to the ratio tau_R/tau_B, where tau_R is the intrinsic recombination time and tau_B is the phonon pair-breaking time. The detailed shape for tau_{eff}(T) in both Nb and Nb(Ti)N suggests a T-dependent bottleneck. In contrast, tau_{eff} for BaPb_xBi_{1-x}O₃ shows almost no T-dependence. Such behavior may be due to inhomogeneity where recombination can occur at interfaces.