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are in fact adaptive in both cases (i.e. can different and even
opposite trait responses increase fitness in different species
under a given set of external stimuli?). Proof of adaptive plas-
ticity also requires analysis of fitness in multiple environments.
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Letters

The Cohesion-Tension 
Theory

In the June 2004 (162: 3) issue of New Phytologist, U.
Zimmermann et al. published a Tansley review that criticizes
the work of many scientists involved in the study of long-
distance water transport in plants (Zimmermann et al.,
2004). Specifically, the review attempts to ‘show that the
arguments of the proponents of the Cohesion Theory
are completely misleading’. We, the undersigned, believe
that this review is misleading in its discussion of the many

recent papers which demonstrate that the fundamentals
of the Cohesion-Tension theory remain valid (Holbrook
et al., 1995; Pockman et al., 1995; Steudle, 1995; Milburn,
1996; Sperry et al., 1996; Tyree, 1997; Melcher et al.,
1998; Comstock, 1999; Stiller & Sperry, 1999; Tyree, 1999;
Wei et al., 1999a; Wei et al., 1999b; Cochard et al., 2000;
Cochard et al., 2001a; Cochard et al., 2001b; Richter,
2001; Steudle, 2001; Cochard, 2002; Tyree & Zimmermann,
2002; Tyree, 2003; Tyree & Cochard, 2003; Tyree et al.,
2003). We wish the readers of New Phytologist to know that
the Cohesion-Tension theory is widely supported as the only
theory consistent with the preponderance of data on water
transport in plants.
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Editorial

Tansley reviews
Authors of Tansley reviews, which are fully peer-reviewed papers,
are asked to consider two major themes in their writing. First,
to deal with major research topics in some depth – to provide a
‘touchstone’ for those intending to enter the field. Second, to
consider the review less as an exercise in literature documentation
and more as a forum for the presentation of ideas. The balance
between these two themes varies widely, depending on the sub-
ject and the individual, but we aim to make the distinction clear.

Where views and opinions are expressed in a Tansley review,
or indeed any New Phytologist paper, these naturally belong
to the authors. This is, we believe, clearly the case in the
writing of the Tansley review by Zimmermann et al. in our
June 2004 (162: 3) issue (Zimmermann et al., 2004).

The Tansley reviews and our forum section encourage
debate in New Phytologist. We therefore welcome discussion,
in this instance concerning the work of Zimmermann et al.
through the comments of Angeles et al. (2004), which com-
plement recent and relevant publications in New Phytologist
by Brodribb & Holbrook (2004) and Sperry (2004).

Ian Woodward
Editor-in-Chief
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Letters

How dangerous is the use of 
fungal biocontrol agents to 
nontarget organisms?

Biological control of plant pathogens is a method based on
the antagonism between microorganisms (Andrews, 1992) –
fungi or bacteria known to be antagonistic to a given plant
pathogen are artificially multiplied and then released into an
agricultural field to control a plant disease. Most biocontrol
agents (BCAs) of plant diseases, similar to most plant patho-
gens they control, are fungi. Their use is considered, in general,
as a safe and environmentally friendly alternative for plant

disease control compared to the application of conventional
pesticides (Whipps & Lumsden, 2001). Recently, Brimner
& Boland (2003) published a review of the nontarget effects
of fungal BCAs of plant pathogens in which they attempt to
demonstrate the way in which many hazards may be associated
with the use of fungi as BCAs of plant diseases. However, as
the examples highlighted here indicate, their case was based
mainly on unsubstantiated statements, which might mislead
and be detrimental to the application of BCAs in the future.

Brimner & Boland (2003) use expressions such as ‘signific-
ant environmental impacts’, ‘significant threat’ and ‘unfore-
seen ecological repercussions’ in order to dramatize suggested
damaging effects of fungal BCAs. However, none of the
data reviewed in the paper support these serious warnings.
Similarly, key statements such as ‘released BCAs have the
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Comment on "Water ascent in tall trees: does evolution of land plants rely on 

a highly metastable state?" by Ulrich Zimmermann, Heike Schneider, Lars H. 

Wegner, and Axel Haase (New Phytologist 162: 575–615.) 

Abstract: 
The critique given by Zimmermann et al. (2004) of Holbrook et al. (1995) is fundamentally 

flawed.  Figure 1 of Holbrook et al. (1995) is a stick figure schematic illustration of the 

experiment presented in the paper, with the leaf chamber size and details given in footnote 13.  

Zimmermann et al display a fundamental misunderstanding of the correct application of the 

centrifugal force equation used in the experiment.  Their imaginary scenario produces tensions 

1/225
th

 to 1/2500
th

 of those needed to produce the 1:1 observations of Holbrook et al., rather than 

produce tensions capable of providing an alternative path to the observed 1:1 observation. In 

addition, they mislead the reader by failing to point out that the water potential of the control 

leaves was independent of the angular velocity. 

Details: 

On page 615 of the article "Water ascent in tall trees: does evolution of land plants rely on a 

highly metastable state?" by Ulrich Zimmermann, Heike Schneider, Lars H. Wegner, and Axel 

Haase (New Phytologist 162: 575–615), the authors state: 

"The experiment of Holbrook et al. (1995) is faced with the same shortcomings as the 

various ‘vulnerability’ methods. They used an excised stem segment with a single leaf at 

its midpoint, and mounted the midpoint of the stem on the rotating axis of a centrifuge-

like set-up placed in a closed chamber. After centrifugation the authors removed the leaf 

and determined the balancing pressure value. In the light of the discussion in section III.3 

tension in the xylem should be released instantaneously upon cutting (provided that no 

breakage of the water columns had occurred). Nevertheless, the authors found a 1 : 1 

relationship between the (relative) pressure calculated from the centrifugation force and 

the balancing pressure. A possible explanation for the 1 : 1 correlation is that water was 

shifted into the periphery of the leaf (including the intercellular spaces) during 

centrifugation. Then, Newton’s law that action has to equal reaction requires that the 

same force is needed to push water back from the tissue into the xylem. The problem for 

interpreting the data is the control experiment of Holbrook et al. (1995). It is obvious 

from the sketch in Fig. 1 of their paper that the control leaf, being not attached to the 

branch, was spun simultaneously, but not fixed close to the rotor axis of the centrifuge. In 

http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2004.01142.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2004.01141.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2004.01083.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2004.01083.x/abstract
http://www.sciencemag.org/content/270/5239/1193
http://www.sciencemag.org/content/270/5239/1193


this case, the leaf is pressed against the wall of the chamber during rotation and, in turn, 

the centrifugal forces may act in a different way on the water in the control leaf compared 

to the fixed leaf. This could explain why the Pb-values of the control leaves were 

significantly lower than those of the attached leaves by 0.2 to 0.4 MPa. A correlation with 

the calculated rotational tension can also not be expected under these conditions. 

However, the finding that the Pb-values of the control leaves were significantly higher 

than the values of untreated leaves (0.05 MPa relative to atmosphere) evidences clearly 

that the control experiments were not properly designed." 

 

To propose their hypothetical "flaw", Zimmermann et al. ignore the data in footnote 13 and 

instead propose an imaginary scenario they believe will produce the result they desire.  Taking 

Zimmerman et al.'s statements at face value, the forces Zimmermann et al. describe shifting the 

water to "…the periphery of the leaf (including the intercellular spaces) during centrifugation" 

range from factors 2-3 orders of magnitude too small to account for the 1:1 relationship of the 

Scholander reading to the "calculated rotational tension" presented in Figure 2 of Holbrook et al.  

As clearly stated in footnote 13 of Holbrook et al., the lengths of the Cercis occidentalis 

branches ranged from 30-100cm, thus the R’s used to calculate the "calculated rotational 

tension" (x-axis of Figure 2) ranged from 15-50cm while the maximum extension from the 

rotation axis any part of a leaf even using Zimmermann et al.'s incorrect description of the Cercis 

occidentalis leaves is 1cm, limited by the chamber size clearly stated in footnote 13. The induced 

tension in the water column at the rotation center is T=0.5σω
2
R

2
, where σ is the density of water, 

ω the angular velocity, and R is the distance from the axis of rotation to the end of the water 

column, which Holbrook et al.'s Figure 2 x-axis, was half the branch length.  Zimmerman’s 

imaginary scenario results in a discrepancy of a factor of the square of half the total branch 

length to the square of the 1 cm leaf chamber radius, thus a discrepancy of 15
2
:1 to 50

2
:1 (225:1 - 

2500:1 ) from the observed 1:1 ratio. In other words, since the x-axis of Figure 2 of Holbrooket 

al. is a calculated value usingR's of 15-50cm, and the induced tensions anywhere there is an 

intact water column depend on the water column R
2
, leaves with a maximum moment arm (R) of 

1cm cannot have tensions induced between their centers and peripheries sufficient to come 

anywhere near the calculated values where R ranged from 15 to 50cm. (The 1:1 line of Figure 2 

of Holbrook et al.) Zimmermann et al.'s (erroneous) scenario could, based on simple physics any 

High School physics student would understand, induce tensions 1/225
th

 to 1/2500
th

 of those 

needed to produce the 1:1 observations of Holbrook et al. Thus Zimmermann et al.'s 

imaginary "possible explanation" results in tensions 2 -3 orders of magnitude too small to 

produce the observed 1:1 ratio of Figure 2. Furthermore, had Zimmermann et al.'s imaginary 

scenario been valid, it would have had to also occur in the test leaves which would have resulted 

in the test leaves being indistinguishable from the control leaves, in direct contradiction with the 

actual observations.  

In addition, had Zimmermann et al. looked up what Cercis occidentalis  leaves look like, it 

would have been obvious that both the test and control leaves had to be wrapped together around 

the inner chamber walls, thus experiencing exactly the same forces and thus precluding their 

proposed scenario from occurring even with its deficiencies. In other words, the experiment of 

Holbrook et al. is even more robust than it may appear to an inattentive reader.  



Given the overall tenor of Zimmermann et al., we will leave it to the reader to speculate as to 

why Zimmermann et al. would advance the critique on Holbrook et al. that they did, hidden in 

the second appendix their paper and without presenting any estimates for the magnitude of the 

hypothesis they proposed despite such estimates being in a realm that any High School physics 

student could easily calculate. 

Holbrook et al. (1995) - "Negative Xylem Pressures in Plants: A Test of the Balancing Pressure 

Technique", N. Michele Holbrook, Michael J. Burns, and Christopher B. Field, Science 270, 

1193 (1995) 

Zimmermann et al. (2004) -"Water ascent in tall trees: does evolution of land plants rely on a 

highly metastable state?", Ulrich Zimmermann, Heike Schneider, Lars H. Wegner, and Axel 

Haase New Phytologist 162: 575 (2004).) 
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