Temperature Dependent Excess Quasiparticle Relaxation in Nb, Nb(Ti)N and BaPb$_x$Bi$_{1-x}$O$_3$

1Brookhaven National Laboratory
2CNRS-Orsay
3University of Florida
4CEA-Saclay
5Seoul University
6Jet Propulsion Lab

Far-infrared, pump-probe spectroscopy has been used to measure the relaxation of excess quasiparticles in Nb, Nb(Ti)N and BaPb$_x$Bi$_{1-x}$O$_3$ thin film superconductors. We have measured both the effective recombination time (τ_{eff}) and the relative excess quasiparticle density (n_{qp}/n_0) from 0.25T_c up to T_c. The temperature-dependent results were analyzed using a linearized form of the Rothwarf-Taylor equations that takes into account the phonon bottleneck for quasiparticle recombination. The behavior of τ_{eff} and n_{qp}/n_0 is sensitive to the ratio τ_R/τ_B, where τ_R is the intrinsic recombination time and τ_B is the phonon pair-breaking time. The detailed shape for $\tau_{\text{eff}}(T)$ in both Nb and Nb(Ti)N suggests a T-dependent bottleneck. In contrast, τ_{eff} for BaPb$_x$Bi$_{1-x}$O$_3$ shows almost no T-dependence. Such behavior may be due to inhomogeneity where recombination can occur at interfaces.