2018 MRS Fall Meeting & Exhibit, November 25 – November 30, 2018, Boston Massachusetts USA

NM02.11.09

Roughening Temperature of Facets in Au Electrodeposition

Nathan Nesbitt¹,Samantha Jaszewski²,Ming Ma¹,Bartek Trzesniewski¹,Fazel Fallah Tafti²,Michael Burns²,Michael Naughton²,Wilson Smith¹

¹Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands ²Boston College Physics Dept., Chestnut Hill, Massachusetts, United States

A theory has been established to describe the formation of facets on metal crystals grown from their melt. There exists a temperature for each crystallographic orientation below which it will form a facet, and above which the metal surface will be rounded and atomically rough. Here we have extended this theory to electrodeposition. We used potentiostatic electrochemical impedance spectroscopy to measure the approximate surface energy of Au at different applied potentials to determine the roughening temperature for each potential. From this, we grew different nanostructures with different proportions of facets and tested them as electrocatalysts for CO_2 reduction.